
SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS

MARCEL JACKSON AND TIM STOKES

Abstract. The “if-then-else” construction is one of the most elementary
programming commands, and its abstract laws have been widely studied, start-
ing with McCarthy. Possibly the most obvious extension of this is to include
the operation of composition of programs, which gives a semigroup of functions
(total, partial or possibly general binary relations) that can be recombined us-
ing if-then-else. We show that this particular extension admits no finite
complete axiomatization and instead focus on the case where composition of
functions with predicates is also allowed (and we argue there is good rea-
son to take this approach). In the case of total functions—modelling halting
programs—we give a complete axiomatization for the theory in terms of a
finite system of equations. We obtain a similar result when an operation of
equality test and/or fixed point test is included.

1. Motivation and summary of results

1.1. Motivation and background. Let X be a set. The semigroup T (X), con-
sisting of all transformations X → X under composition, is a generic semigroup: all
semigroups embed in such examples. However, T (X) is a somewhat impoverished
object in terms of available operations. By comparison, the larger set R(X) of bi-
nary relations on X possesses many operations. Aside from relational composition,
all of the usual Boolean set-theoretic operations (including bottom and top) make
sense in R(X), as does relational converse. Adding in 1 to the mix (representing the
diagonal relation), and abstracting out essential properties, gives rise to the theory
of relation algebras, an enrichment of the theory of semigroups that is very rich
indeed. One can further add in the operation of Kleene closure (reflexive transitive
closure) to obtain yet another useful and important operation. Of these operations,
T (X) is closed under very few: only composition and the identity element can be
retained!

One has more success if one broadens the outlook to consider the set P (X)
of (partial) functions X → X. P (X) is a semigroup under composition, but is
also closed under intersection and indeed set difference, a number of variants of
union, and various other operations relating to domain, range, domains of non-
disagreement, and maximal iteration, as discussed in many articles: see the survey
article by Schein [19], or that by the authors [10].

But there is at least one “operation” on T (X) that still makes sense, that of
piecewise combination. Thus, given f, g ∈ T (X) and a “test” or predicate α defined
onX, one can form the transformation h which agrees with f whenever α is satisfied
and with g when it is not. Of course such a piecewise definition is a very familiar
way of defining new transformations from old: the absolute value function has just
such a description for example. (In that case, X = R, α =“(x ≥ 0)”, f(x) = x and

Key words and phrases. transformation; semigroup; if-then-else; equality test.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29197453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 MARCEL JACKSON AND TIM STOKES

g(x) = −x.) By iterating the process of taking such pairwise combinations, one
can obtain arbitrary piecewise combinations of transformations.

The operation just described corresponds to the notion of if-then-else for
transformations on a set X, familiar from the theory of computer programs. If α
is a predicate or “test” on X and f, g ∈ T (X), then define “if α then f else g” as
follows:

α[f, g](x) :=

{
f(x) if x satisfies α,
g(x) otherwise.

Of course the notion of a piecewise-defined function has wide applicability: one
speaks of piecewise-linear, piecewise-continuous, piecewise-differentiable functions,
and so on.

Quite a lot of previous work has been done on the if-then-else operation. Mc-
Carthy gave an axiomatization of it in [15], having in mind a model of “programs”
as functions X → Y , and “tests” as comprising a Boolean algebra of predicates
acting on the set of programs; in this formulation, composition is not present. In
[1], Bergman defined the similar notion of a set with B-action, or a B-set, and gave
a sheaf-theoretic representation. (This concept was extended to cover cases where
the set had algebraic structure, with the operations modelling pointwise operations
on functions: algebras with B-action.) Other investigations into the equational
properties of various forms of if-then-else can be found in the articles of Bloom
and Tindell [2], Meklar and Nelson [16], and Guessarian and Meseguer [5].

Manes considered an extension of the McCarthy approach to if-then-else that
also included a join operation. Semantically, the programs were modelled as binary
relations between two distinct sets such that for each binary relation, each element
has a finite image: see [14]. The join operation then modelled relational union.
The Boolean algebra of computable tests was also generalised, to allow modelling
of tests which may not halt.

The case of if-then-else together with composition has received consider-
able attention also, mostly from theoretical computer scientists, in settings where
programs are modelled as binary relations on a set. In the setting of program ver-
ification theory and program logics, the classes of dynamic algebras (see Pratt [18]
for example) and Kleene algebras with tests (see Kozen [12] for example) furnish
two algebraic environments in which if-then-else plus composition (and indeed
“while”) can be captured, at least at some equational level, and relative to a rela-
tional interpretation of the program variables.

In the Kleene algebra with tests approach, the “tests” are embedded into the
program sort, where they are interpreted as restrictions of the identity mapping.
(This is implicitly true in the dynamic algebra with tests approach too: indeed this
is inevitable if the identity and empty relations are part of the program signature, as
is argued in [9].) However, such an approach is in principle impossible for algebras
of transformations, since such restrictions are obviously not transformations! An
intrinsically external notion of test is needed, more like the approach taken by
McCarthy, Bergman and Manes, but with the capacity to capture composition as
well.

In many settings, it is quite natural to consider composition of transformations
with predicates. For example, the composition of the polynomial function x2 with
the piecewise function |x| = (x ≥ 0)[x,−x] is just (x2 ≥ 0)[x,−x] = x; in computing
this, the predicate (x2 ≥ 0) was obtained as the composition of the function x2 with

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 3

the predicate (x ≥ 0). In any case, since such composites can be computed, it is
reasonable to attempt to model this operation, rather than just composition of
transformations.

The concept of the composition of a transformation with a predicate is a par-
ticular case of the “predicate transformers” considered by Dijkstra in [4]. These
arise in the setting of formal methods of program verification via certain natural
modal operators corresponding to “weakest preconditions”. Thus given a program
f and a test α, the predicate [f]α is true exactly when an input to f gives rise to no
output satisfying the negation of α (the “weakest liberal precondition” to f given
the “postcondition” α); its natural dual is the predicate 〈f〉α, which is true exactly
when an input gives rise to some output satisfying α. If f is a transformation, the
two predicates [f]α and 〈f〉α are equal, and indeed each is nothing but the compo-
sition of the transformation f with the predicate α as just discussed. The truth set
of this predicate is the preimage of the truth set of α under the transformation f .

The notion of a Kleene algebra with domain (KAD), considered in [13], permits
expression of such predicate transformers in terms of a domain operator, in which
the test corresponding to the domain of a binary relation f , δ(f), is modelled as a
restriction of the identity. Indeed if α is any such restriction of the identity, and f
is a transformation, we have 〈f〉α = δ(fα) and [f](α) = δ(fα′)′, where α′ denotes
the restriction of the identity to the complement of the domain of α. Again, both
of these are just the composite of f with α if f is a transformation.

Recently, a partial function version of KAD has been considered; see [9]. Partial
functions are not closed under union or Kleene closure, but are closed under certain
natural analogs capable of capturing the if-then-else and while program oper-
ators for deterministic programs. Representation theorems rather stronger than
known results for the non-deterministic case can be obtained. The current work
can be viewed as a variation of this work in which all functions are assumed to
be total (the “programs” are halting on all inputs), and the tests are necessarily
external to the function algebra.

In practice, tests have specific forms, such as “(x ≥ 0)”. In the general setting in
which the domain set X has no assumed structure, the only test that can sensibly
be defined relates to equality of elements, and by extension, pointwise equality of
transformations. Thus given two transformations f, g on X, one may form the
predicate f ∗ g, which is true at a ∈ X exactly when f(a) = g(a). This predicate
f ∗ g is computable if both f, g are programs halting on all inputs. Such equality
tests were considered in conjunction with if-then-else (but not composition) by
Pigozzi [17], where the quasi-equational theory of such algebras was considered for
the special case of the two-element Boolean algebra.

1.2. Summary of results. Our main aim here is to study abstract algebras of
transformations and tests, equipped with exactly the operations referred to in
the above discussion, namely the Boolean operations on the predicates, compo-
sition of transformations with each other and with tests, and a family of binary
if-then-else operations on the transformations (one for each test). Hence these
algebras are simultaneously enrichments of semigroups and of B-sets, but also pos-
sess a “predicate transformer” operation allowing composition of transformations
and predicates. We characterize (in Section 3) the two-sorted algebras embeddable
in the concrete transformation examples, this class proving to be a finitely based

4 MARCEL JACKSON AND TIM STOKES

(two-sorted) variety, and we solve the equational problem in this variety by show-
ing how to compute in free algebras (Section 5). We also enrich the signature by
adding in an equality test operation as described above; in this case the class of
representable algebras continues to be a finitely-based variety and we give defin-
ing laws (Section 7). Along the way, we recover Pigozzi’s results for the case of
if-then-else and equality tests without composition (Section 2).

In Section 6 we show that composition of transformations with predicates is
necessary, in the sense that without it, no finite axiomatization is possible. There
is interest here from a computing point of view because we are modelling a large
fragment of the algebra of halting programs: if we begin with functions and tests
that are computable for all inputs and compose them in any way possible, or if
we take some piecewise combination of the functions using the tests, the result is
still computable (here meaning “will halt on all inputs”). We also show no finite
axiomatization is possible in both the partial function and general binary relation
cases; moreover, in these non-transformation settings, the argument carries over to
include the operation of while. Thus we show that the smallest algebraic language
capable of expressing the language of “while” programs (namely Boolean operations
on tests, composition, if-then-else and while) fails to have a finite axiomatiza-
tion for the universal sentences that are true for either functional (deterministic)
models, or relational (nondeterministic) models.

We adopt a uniform notation for all composites, using a dot if necessary or
juxtaposition where possible. Thus any two transformations f, g can be composed
to give a third, fg (“first f then g”, throughout what follows), and a transformation
f and a predicate α can be composed to give the predicate fα (“first f then α”).
So, implicitly, the transformations in T (X) act on the right of X. Nevertheless,
for the sake of notational familiarity we use the notation f(x) to denote the image
of an element x ∈ X under a map f ∈ T (X), so that the composite fg acts as
(fg)(x) = g(f(x)). We frequently identify the power set of a set X and the set of
characteristic functions 2X on X.

2. If-then-else and equality test without composition

We begin with the “flat” or “non-dynamic” case, in which one models if-then-else
and equality tests defined on a set. We obtain subdirect product representations
in terms of “basic” algebras (in which the two-element Boolean algebra is used).
Importantly, the method of proof extends readily to the “dynamic” situation in
which composition of transformations is modelled.

2.1. If-then-else only. Let B be a Boolean algebra, with the operations of meet,
join and complement denoted by ∧,∨ and ′ respectively, and nullaries denoting the
top and bottom denoted by T and F respectively. For our purposes, a B-set is
defined to be a pair (X,B) where X is a set and B is a Boolean algebra, such there
is a B-action B × X × X → X, here denoted α[a, b], α ∈ B and a, b ∈ X, and
satisfying, for all α, β ∈ B and a, b, c ∈ X,

(1) α[a, a] = a,
(2) α[α[a, b], c] = α[a, c],
(3) α[a, α[b, c]] = α[a, c],
(4) F[a, b] = b,
(5) α′[a, b] = α[b, a] and

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 5

(6) (α ∧ β)[a, b] = α[β[a, b], b].
This is essentially the definition given in [1], except that there, the choice of

Boolean algebra was built into the title “B-set” (as in “associative K-algebra” for
example). Here, we view B-sets as two-sorted, with the Boolean algebra B allowed
to vary.

Every Boolean algebra B is such that (B,B) is a B-set, if we define

α[β, γ] = (α ∧ β) ∨ (α′ ∧ γ)
for all α, β, γ ∈ B, and in what follows we use this notation freely for any Boolean
algebra. For us, the important B-sets are those of the form (T (X), 2X), with α[f, g]
as defined in the introduction.

A special case of B-sets arises by letting B = 2 := {F,T}, the two-element
Boolean algebra, and setting T[s, t] = s and F[s, t] = t for all s, t ∈ S; then (S,B) is
a B-set, and we call any such B-set basic. These are essentially the if-then-else
algebras considered by Pigozzi in [17] (although we are assuming a single non-
Boolean sort here).

We next show that each B-set is embeddable in a direct product of basic B-sets.
Hence the laws for B-sets capture the quasi-equational theory of basic B-sets, a
result also shown in [17] in greater generality. The method of the representation is
critical in the work to follow, so we include all proofs for completeness.

Throughout, let (S,B) be a fixed B-set. As mentioned, Greek letters denote
elements of B.

Let F be a filter of B. Define

EF = {(s, t) ∈ S × S | ∃ α ∈ F : α[s, t] = t}.

Proposition 2.1. EF is an equivalence relation on S.

Proof. EF is reflexive since T[s, s] = s for all s ∈ S and T ∈ F . It is symmetric
because if α[s, t] = t then α[t, s] = α[α[s, t], s] = α[s, s] = s. It is transitive because
if α[s, t] = t and β[t, u] = u where α, β ∈ F , then (α ∧ β)[s, t] = β[α[s, t], t] =
β[t, t] = t, and (α ∧ β)[t, u] = α[β[t, u], u] = α[u, u] = u, so

(α ∧ β)[s, u] = (α ∧ β)[(α ∧ β)[s, t], u] = (α ∧ β)[t, u] = u,

with α ∧ β ∈ F . 2

Lemma 2.2. For a, b ∈ S with a 6= b, there is an ultrafilter G of B for which
(a, b) 6∈ EG.

Proof. Pick a, b as in the theorem statement. Let

F = {γ′ ∈ B | γ[a, b] = b}.
Suppose α′, β′ ∈ F , so that α[a, b] = b, and β[a, b] = b. Then

(α ∨ β)[a, b] = (α′ ∧ β′)[b, a]
= α′[β′[b, a], a]
= α[a, β[a, b]]
= α[a, b]
= b,

so α′ ∧ β′ = (α ∨ β)′ ∈ F .

6 MARCEL JACKSON AND TIM STOKES

Further, if γ′ ≥ α′ ∈ F , then γ ≤ α, and

γ[a, b] = (γ ∧ α)[a, b] = γ[α[a, b], b] = γ[b, b] = b,

so γ′ ∈ F . Hence F is a (clearly non-empty) filter of B. Extend it to an ultrafilter
G of B. Suppose (a, b) ∈ EG; then α[a, b] = b for some α ∈ G. Then because
α′ ∈ F ⊆ G, we have F = α ∧ α′ ∈ G, a contradiction. Hence (a, b) 6∈ EG. 2

Let S = ΠiSi be a direct product of the sets Si, i ∈ I. Letting B be the power
set of I and for a, b ∈ S, defining α[a, b] to have i-th entry equalling that of a if
i ∈ α, and equalling that of b otherwise, it is easily seen that (S,B) is a B-set.
Indeed it is fairly obvious that it is isomorphic to the direct product of the basic
B-sets defined on the Si. We show that every B-set is embeddable in such a B-set.

Theorem 2.3. Every B-set is a subdirect product of basic B-sets.

Proof. Let (A,B) be a B-set. For any ultrafilter F of B, EF is easily seen to
be a congruence on A (respecting each α[,] operation), and of course induces a
congruence on B as well. Indeed the pair of homomorphisms f : B → B/F ∼= 2 and
h : A→ A/EF is easily seen to constitute a two-sorted homomorphism from the B-
set (A,B) to the basic B-sets (A/EF ,2). Suppose (a, b) ∈ ∩FEF , the intersection
taken over all ultrafilters F of B. Suppose a 6= b; then letting G be as in the
statement of Lemma 2.2, we have that (a, b) 6∈ EG, a contradiction. Hence ∩FEF

is trivial. Likewise the intersection of all the ultrafilters of B is {T}. So A is a
two-sorted subdirect product of the basic B-sets (A/EF ,2). 2

A sheaf-theoretic description of B-sets is given by Bergman in [1], and the above
proof extends easily to the algebras with B-action considered there (in which A has
additional algebraic structure).

2.2. Equality tests. In computer programs, perhaps the most common type of
test encountered is an equality query. For two transformations f, g ∈ T (X), define:

f ∗ g = {x ∈ X | f(x) = g(x)}.

(Strictly, we define it to be the predicate on X having this truth set!)
As noted earlier, such a test is computable if both f and g are halting programs.

We now seek to incorporate this operation into our algebraic formalism. Two similar
operations have been considered in the setting of partial functions by the current
authors in [7] and [22], but for total functions the two operations agree with ∗ as
just defined. We adopt our notation and nomenclature from [7] (although here our
functions act on the right rather than on the left).

A B-set (S,B) is agreeable if it is equipped with an operation ∗ : S × S → B
satisfying the following for all s, t, u, v ∈ S and α ∈ B:

(1) s ∗ s = T;
(2) (s ∗ t)[s, t] = t;
(3) α[s, t] ∗ α[u, v] = α[s ∗ u, t ∗ v].

In fact ∗ can be described in terms of the usual ordering on B. Throughout let
(S,B) be a fixed agreeable B-set.

Lemma 2.4. For a, b ∈ S, a ∗ b = max{α ∈ B | α[a, b] = b}, and if α ≤ a ∗ b, then
α[a, b] = b.

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 7

Proof. Suppose α[a, b] = b for some α ∈ B. But then

α ∧ (a ∗ b) = α ∧ (α[a, a] ∗ α[a, b])
= α ∧ ((α ∧ (a ∗ a)) ∨ (α′ ∧ (a ∗ b)))
= α ∧ (α ∧ α′ ∧ (a ∗ b))
= α,

so (a ∗ b) ≥ α. But (a ∗ b)[a, b] = b, so a ∗ b is as described.
If α ≤ a ∗ b, then

α[a, b] = (α ∧ (a ∗ b))[a, b] = α[(a ∗ b)[a, b], b]] = α[b, b] = b.

2

The definition of EF can be given a simpler formulation in the presence of ∗.

Proposition 2.5. For F a filter of B, (a, b) ∈ EF if and only if a ∗ b ∈ F .

Proof. Suppose (a, b) ∈ EF . Then α[a, b] = b for some α ∈ F so a ∗ b ≥ α by the
last lemma, and so a ∗ b ∈ F also.

Conversely, if a ∗ b ∈ F , then (a ∗ b)[a, b] = b shows that (a, b) ∈ EF . 2

It is easily seen that if an agreeable B-set is basic, then necessarily a ∗ b = T if
a = b, with a∗b = F otherwise. These are the two-sorted cases of the if-then-else
algebras with equality tests considered in [17].

To extend Theorem 2.3 to the agreeable case, we need two useful laws.

Lemma 2.6. For a, b, c ∈ S, (a ∗ b) ∧ (b ∗ c) ≤ (a ∗ c) and a ∗ b = b ∗ a.

Proof. The fact that a ∗ b = b ∗ a can be obtained from Proposition 2.5 and the
symmetry of EF (for any filter F). Now for the first law,

((a ∗ b) ∧ (b ∗ c))[a, c] = ((a ∗ b) ∧ (b ∗ c))[((a ∗ b) ∧ (b ∗ c))[a, b], c] by B-set law (2)
= ((a ∗ b) ∧ (b ∗ c))[(b ∗ c)[(a ∗ b)[a, b], b], c] by B-set law (6)
= ((a ∗ b) ∧ (b ∗ c))[(b ∗ c)[b, b], c] by agreeable B-set law (2)
= ((a ∗ b) ∧ (b ∗ c))[b, c] by B-set law (1)
= (a ∗ b)[(b ∗ c)[b, c], c] by B-set law (6)
= (a ∗ b)[c, c] by agreeable B-set law (2)
= c by B-set law (1),

and so by Lemma 2.4, (a ∗ b) ∧ (b ∗ c) ≤ (a ∗ c). 2

Theorem 2.7. Every agreeable B-set is a subdirect product of basic agreeable B-
sets.

Proof. In the language of the proof of Theorem 2.3, we wish to show that
h(a) ∗ h(b) = f(a ∗ b) (with the choice of ultrafilter F fixed). It is sufficient to
show that if (a1, a2) ∈ EF and (b1, b2) ∈ EF , and if a1 ∗ b1 ∈ F , so is a2 ∗ b2. So
assume a1 ∗ a2 ∈ F , b1 ∗ b2 ∈ F , and a1 ∗ b1 ∈ F . Then F 3 (a1 ∗ a2) ∧ (a1 ∗ b1) =
(a2∗a1)∧(a1∗b1) ≤ a2∗b1 by Lemma 2.6, hence also F 3 (a2∗b1)∧(b1∗b2) ≤ (a2∗b2),
so a2 ∗ b2 ∈ F as required. 2

8 MARCEL JACKSON AND TIM STOKES

3. B-semigroups

We now bring composition of functions into the picture. As discussed, we con-
sider not only composition of pairs of transformations, but also of transformations
with predicates. (The case of composition of transformations only is treated in
Section 6.)

A B-semigroup (S,B) is a B-set for which S is a semigroup and there is an
operator · : S ×B → B, often denoted by juxtaposition, and satisfying the laws

(1) aT = T,
(2) (aα) ∧ (aβ) = a(α ∧ β),
(3) a(α′) = (aα)′,
(4) a(bα) = (ab)α,
(5) α[a, b] · c = α[ac, bc],
(6) a · α[b, c] = (aα)[ab, ac],
(7) β[a, b] · α = β[aα, bα].

The convention that Greek letters denote elements of B is used above, and will be
throughout the remainder of the article.

Recall that β[aα, bα] is calculated in Boolean terms: it is (β ∧ aα) ∨ (β′ ∧ bα),
where semigroup multiplication is given precedence over Boolean operations. These
axioms bear a similarity to those of dynamic algebra [18], as well as to those of
Kleene algebra with domain [13], if aα is written as [a]α or indeed 〈a〉α (which
are equal in the current setting). Laws (1)–(4) together assert that S acts as a
semigroup of endomorphisms on B. The remainder express the interactions between
if-then-else and the two composition operations.

For X a set, (T (X), 2X) is a B-semigroup if one defines all operations as in the
introduction: it is a B-set as usual, T (X) is a semigroup under composition, and
· : T (X)×2X → 2X is defined to be composition of transformations with predicates.
Familiar examples are provided by the piecewise constant functions, piecewise poly-
nomial functions, piecewise continuous functions, and so on, all mapping the reals
to itself, and each equipped with a suitable Boolean algebra of “pieces”.

We now extend the representation of B-sets to B-semigroups. The same family
of equivalence relations EF (F an ultrafilter) is used. Throughout, let (S,B) be a
fixed B-semigroup.

Proposition 3.1. Let F be a filter of B. Then EF is a right regular equivalence
relation on S, meaning that if (s, t) ∈ EF then (su, tu) ∈ EF for all s, t, u ∈ S.

Proof. If (s, t) ∈ EF then α[s, t] = t for some α ∈ F , and so for any u ∈ S,
tu = α[s, t] · u = α[su, tu], and so (su, tu) ∈ EF . 2

For any filter F of B, let SF = S/EF ∪ {1}, where 1 6∈ S. The following is now
easily established.

Corollary 3.2. The function φF : S → T (SF) given by φF (a) = ψa, where ψa(x) =
xa for all x ∈ S/EF , with ψa(1) = a, is a semigroup homomorphism.

Indeed φF is just the right action of S on the blocks of a right congruence
of S. (We mention here that our method can be viewed as an example of the
“determinative pair” method, as described by Schein in [20] for example.)

Next we consider the Boolean sort. Our goal is to show that each Boolean test
element determines a predicate on SF such that the Boolean operations correspond

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 9

to the usual predicate connectives. This is equivalent to showing that the assign-
ment of a truth set to each test is a homomorphism from B to the power set of the
domain space (viewed as a Boolean algebra in the usual way).

Again let F be a fixed filter of B. Define fF : B → 2SF (viewed here as the
power set of SF equipped with its usual Boolean operations) by setting, for each
α ∈ B,

fF (α) := {x ∈ S/EF | xα ∈ F} ∪ (α : F),
where (α : F) = {1} if α ∈ F and is otherwise empty.

Theorem 3.3. For each ultrafilter F , fF is a homomorphism. Moreover for each
α ∈ B and s ∈ S, sα has truth set the inverse image of the truth set of α under
φF (s).

Proof. We must first show that f = fF is well-defined. If x = y, then (x, y) ∈ EF ,
so β[x, y] = y for some β ∈ F . If also xα ∈ F , then

yα = β[x, y] · α = β[xα, yα] = (β ∧ (xα)) ∨ (β′ ∧ (yα)) ≥ β ∧ (xα) ∈ F,
and so yα ∈ F also, as required.

For α, β ∈ B,

f(α ∧ β) = {x ∈ S/EF | x(α ∧ β) ∈ F} ∪ (α ∧ β : F)
= {x ∈ S/EF | xα ∧ xβ ∈ F} ∪ (α ∧ β : F)
= {x ∈ S/EF | xα ∈ F and xβ ∈ F} ∪ ((α : F) ∩ (β : F))
= f(α) ∧ f(β),

and

f(α′) = {x ∈ S/EF | x(α′) ∈ F} ∪ (α′ : F)
= {x ∈ S/EF | xα′ ∈ F} ∪ ({1}\(α : F))
= {x ∈ S/EF | xα 6∈ F} ∪ ({1}\(α : F))
= f(α)′.

Now for s ∈ S and α ∈ B, we want to show that sα has truth set in SF the inverse
image of the truth set of α under φF (s). Now let x ∈ S/EF . Then x ∈ fF (sα)
if and only if (xs)α = x(sα) ∈ F , if and only if ψs(x) = xs ∈ fF (α). It remains
to check the fate of 1 ∈ SF . But 1 ∈ fF (sα) if and only if sα ∈ F , if and only if
ψs(1) = s ∈ fF (α), as required. 2

Hence B acts as a Boolean algebra of predicates on SF , in such a way that
sα computes composites of transformations and predicates (equivalently, inverse
images) as hoped.

In order to establish faithfulness, we need to show that each non-equal pair
a, b ∈ S can be “separated” by some ultrafilter. This follows easily from Lemma
2.2.

Theorem 3.4. For a, b ∈ S with a 6= b, there is an ultrafilter G of B for which
φG(a) 6= φG(b).

Proof. Pick a, b as in the theorem statement. From Lemma 2.2, we know there
is an ultrafilter G of B for which (a, b) 6∈ EG. Then relative to G, ψa(1) = a 6= b =
ψb(1), so ψa 6= ψb. 2

We also want B faithfully represented.

10 MARCEL JACKSON AND TIM STOKES

Proposition 3.5. For α ∈ B with α 6= F, there is an ultrafilter G of B for which
fG(α) 6= ∅.

Proof. Let F be the filter of B generated by α (which does not contain F
since α 6= F). Then F embeds into an ultrafilter G containing α, so by definition,
1 ∈ fG(α) which is therefore non-empty. 2

The Boolean algebra B determines predicates on SF with truth sets determined
by fF , and this induces a B-semigroup structure on T (SF).

Theorem 3.6. Let G be an ultrafilter of B. Then for all α ∈ B and s, t ∈ S, α[s, t]
is represented by φG as the transformation that agrees with the image of s when α
is satisfied and with the image of t otherwise.

Proof. Suppose α ∈ B with s, t ∈ S. First consider x ∈ S/EF . Suppose
x ∈ fG(α), that is, xα ∈ G. But (xα)[xα[xs, xt], xs] = xs, so x · α[s, t] = xα[xs, xt]
is related to xs by EG, that is,

ψα[s,t](x) = xα[s, t] = xs = ψs(x).

Otherwise, suppose x 6∈ fG(α), so that xα 6∈ G, so (xα)′ ∈ G (since G is an ultra-
filter). But (xα)′[(xα)[xs, xt], xt] = (xα)′[(xα)′[xt, xs], xt] = xt, so xt is related by
EG to (xα)′[xt, xs] = (xα′)[xt, xs] = x · α′[t, s] = x · α[s, t], and so

ψα[s,t](x) = x · α[s, t] = xt = ψt(x).

Now consider 1. If 1 ∈ fG(α), that is, if α ∈ G, then because α[α[s, t], s] = s, we
have (α[s, t], s) ∈ EG, that is,

ψα[s,t](1) = α[s, t] = s = ψs(1).

Otherwise, if 1 6∈ fG(α), then α 6∈ G, so α′ ∈ G (since G is an ultrafilter). But
α′[α[s, t], t] = α′[α′[t, s], t] = t, so (α[s, t], t) ∈ EG, that is,

ψα[s,t](1) = α[s, t] = t = ψt(1).

2

Now let F range over all ultrafilters of B. Let S0 denote the disjoint union⋃
F SF . Now paste together all the φF representations to give φ : S → T (S0), and

all the fF truth set representations of B to give f : B → 2S0 . (For example: for
each s ∈ SF ⊆ S0 we define φ(s) := ψF (s).) It follows that φ separates any two
unequal a, b ∈ S, and f sends no non-zero α ∈ B to the empty set (and hence is
injective). Hence we have the following.

Theorem 3.7. The B-semigroup (S,B) is embeddable as a two-sorted algebra into
the B-semigroup (T (S0), 2S0) for some set S0, with S0 finite if S and B are finite.

4. B-monoids

In this section we are interested in modelling B-semigroups for which the semi-
group sort has an identity element that behaves like the identity transformation.

We say that the B-semigroup (S,B) equipped with nullary operation e ∈ S is a
B-monoid if e is an identity element for S, satisfying the law

eα = α, for all α ∈ B.
It is clear that (T (X), 2X) is a B-monoid for any set X.

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 11

Let (S,B) be a B-monoid. Now the representation just given will not represent
the identity e in S as the identity transformation because of its action on the
introduced element 1: for each ultrafilter F of B, we have ψe(1) = e 6= 1. We now
sketch a representation that does work: it is very similar to the one for B-semigroups
given in the last section so we omit the details.

First, in the definition of SF , one need not introduce the new element 1 in order to
ensure faithfulness of the representation: instead one defines EF as before but sets
SF = S/EF . The mapping φF : S → T (SF) is defined exactly as in Corollary 3.2
but without reference to 1, and is still a semigroup homomorphism. The definition
of fF can also be made without reference to 1, so that the (α : F) term is missing.
The proof of the obvious analog of Theorem 3.3 proceeds as before but more easily.
For Theorem 3.4, in the last line of the proof we need only replace ψa(1) by ψa(e)
(and similarly for ψb). For Proposition 3.5, defining F,G as there, we note instead
that e ∈ fG(α) since eα = α ∈ F ⊆ G, giving the same conclusion as before.
In Theorem 3.6, the proof is simplified because 1 is not a separate case. Pasting
together the representations exactly as before then gives the following variant of
Theorem 3.7.

Theorem 4.1. The B-monoid (S,B) is embeddable into a B-monoid of the form
(T (X), 2X).

This result does not imply Theorem 3.7, nor is it implied by it. An alternative
strategy for the current article would have been to begin by showing that every B-
semigroup can be embedded into a B-monoid: with such a result in hand, Theorem
3.7 would of course follow from Theorem 4.1. Such an embedding can indeed be
achieved without any reference to representations, but is a slow if routine task, and
so for brevity we have opted for the presentation given here.

5. Free B-semigroups and the equational problem

The class of representable B-semigroups is a two-sorted variety, as we have seen.
We now solve the equational problem by describing the free algebras within this
variety. First, some general observations.

In any B-semigroup (S,B), suppose α1, α2, · · · , αn ∈ B are such that
∑

i αi = T
and αiαj = F if i 6= j. Then we say the αi constitute a partition of unity, and for
s1, s2, . . . , sn ∈ S, the element

∑
i αisi, defined via∑

i

αisi := α1[s1, α2[s2, . . . , αn−1[sn−1, sn] . . .]],

is a disjoint affine combination. Given Theorem 3.7, we may interpret
∑

i αisi in
functional terms as the transformation that agrees with si on αi for each i. It
follows that the order of occurrence of the terms αisi in the formal sum does not
matter. (This of course can be shown inductively from the defining laws, but follows
easily from the representation theorem just shown.)

A large class of B-semigroups can be described as follows:
• there is a semigroup of transformations S on some base set X (for example

polynomial functions);
• there is a collection of predicates B on X that can be used to define

the piecewise-defined functions, and this collection of predicates forms a
Boolean algebra and is closed under substitution of elements of S into

12 MARCEL JACKSON AND TIM STOKES

the predicates (for example, Boolean combinations of predicates such as
(p(x) ≥ 0), for p(x) a polynomial; this can be thought of as the functional
composition of p : X → X and the test “x ≥ 0” considered as a function
from X to {0, 1}).

Then our set of disjoint affine combinations of elements of S over B—written
affine(S,B)—is the set of all transformations

∑n
i=1 αi(x)si(x), which denotes the

transformation that agrees with si(x) ∈ S when αi(x) is true, and for which the
αi form a partition of unity. (We use the “dummy variable” x here for notational
convenience, and in order to emphasise the similarity with the polynomial case.)

The set affine(S,B) is closed under both composition and the if-then-else
operations; indeed, (here reading composition of functions right to left), we have∑

i

αi(x)pi(x) ◦
∑

j

βj(x)pj(x) =
∑
i,j

(αi(pj(x)) ∧ βj(x))pi(pj(x)),

α
[∑

i

αi(x)pi(x),
∑

i

βi(x)pi(x)
]

=
∑

i

((α(x) ∧ αi(x)) ∨ (α(x)′ ∧ βi(x))pi(x).

Note that in order to perform these computations, we need to compute not only
the composite of any two transformations in S, but also the composite of any
transformation in S with any predicate in B (which we are permitted to do, by
assumption). Indeed this latter two-sorted composition can easily be extended so
that an element of affine(S,B) can be composed with an element of B, via

α ◦
∑

j

βj(x)pj(x) =
∨
j

(βj(x) ∧ α(pj(x))).

In fact, (affine(S,B), B) is a B-semigroup, and Theorem 3.7 shows that every B-
semigroup arises in this way: with φ and f as defined there, (S,B) is isomorphic
to (affine(φ(S), f(B)), f(B)) (and as it happens, one also has affine(φ(S), f(B)) =
φ(S)).

Free B-sets in the sense of Bergman [1] (in which the Boolean ring B is fixed) are
exactly (bounded) Boolean powers, and admit a description quite similar to that
given for affine(S,B) above, though possessing only the if-then-else operations.
Boolean powers can be viewed as the special case in which the elements of S are
all constant functions.

As is well known, any Boolean algebra can be viewed as a Boolean ring with
identity, with addition defined via α + β := (α ∨ β) ∧ (α ∧ β)′, and multiplication
just the Boolean algebra meet; then α′ = T + α. Indeed the varieties are term
equivalent. From now on, we shall freely view all Boolean algebras as Boolean
rings in this section.

We now use the exclusive affine combination idea in order to describe free B-
semigroups. Thus letX be a set of semigroup variables, withX+ the free semigroup
on X. Let A be a set of Boolean variables, AX the union of A together with all
distinct expressions of the form 2t[α] where t ∈ X+ and α ∈ A. Let BA,X be the
free Boolean ring generated by AX . Let M(X,A) be the free unital BA,X -module
on the generating set X+, and let

Fr(X,A) =
{∑

i

αiti | αi ∈ BA,X , ti ∈ X+ and the αi are a partition of unity
}
.

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 13

This set will be the underlying semigroup sort in our construction of the free B-
semigroup on (X,A), while BA,X will be the underlying Boolean ring/algebra sort.
It remains to define the various remaining (non-Boolean) operations.

It is easy to check that (Fr(X,A), BA,X) is a B-set if one defines

α[x, y] := αx+ α′y, x, y ∈ Fr(X,A), α ∈ BA,X ;

indeed it is the Boolean power of X+ by BA,X , as is discussed in [1] and [21]. (In
Bergman’s sense, it is the free BA,X -set on the generating set X+.)

Now for each t ∈ X+, we first show how to define the operation 2t : BA,X →
BA,X , which models the composition operation between transformations and pred-
icates (that is, 2t(α) is the operation corresponding to tα).

• For α ∈ A, define 2t(α) = 2t[α].
• For 2s[α] ∈ AX , define 2t(2s[α]) = 2ts[α].
• Extend the definition of 2t to all of BA,X by specifying that it be the

unique homomorphism BA,X → BA,X acting on the generators AX as just
indicated. (Recall that BA,X is free on AX . Equivalently, to find the action
of 2t on an element β of BA,X , just replace all occurrences of a Boolean
variable α in β by 2t[α] and of 2s[α] by 2ts[α].)

Next we extend the definition of 2 so that its suffix argument can take any value in
Fr(X,A) (and not just X+); define, for any β ∈ BA,X and any

∑
i αiti ∈ Fr(X,A),

2P
i αiti

(β) =
∑

i

αi2ti(β).

This is well-defined because it is nothing but a B-set homomorphism from the free
B-set on the generators X+ over the Boolean ring BA,X defined in terms of its
action on the generators.

It remains to define the semigroup multiplication on Fr(X,A). This is prompted
by the discussion above. For

∑
i αiti,

∑
i βiti ∈ Fr(X,A) (with the ti the same

elements of X+ in both, with some αi or βi zero as necessary), define

(
∑

i

αiti) · (
∑

j

βjtj) =
∑
i,j

αi2ti(βj)titj ,

a definition independent of the particular way of writing
∑

i αiti, and
∑

i βiti be-
cause of the fact that 2t(α1 + α2) = 2t(α1) + βt(α2). Note that the result is in
Fr(X,A), because the αi2ti(βj) form a partition of unity as is easily checked.

Theorem 5.1. (Fr(X,A), BA,X) is the free B-semigroup on the semigroup gener-
ators X and Boolean generators A.

Proof. We need to verify all the B-semigroup laws. Each is quite routine to check
and this is left to the reader, although along the way it is necessary to show that
for s, t ∈ X+, 2s(2t(α)) = 2st(α) for any α ∈ BA,X ; but this is also easily shown
by induction, based on the fact that it is true if α ∈ A.

The fact that (Fr(X,A), BA,X) is free follows from the fact that only the laws
holding in all B-semigroups have been used to define the various operations on
it. The unconvinced reader is again welcome to plough through the routine for-
mal proof, showing that any function from the generators of each sort to the
respective sorts of a B-semigroup (S,B) extends uniquely to a homomorphism
(Fr(X,A), BA,X) → (S,B). 2

14 MARCEL JACKSON AND TIM STOKES

It is straightforward to extend the previous construction to cover free B-monoids
as well. We simply replace the free semigroup on X with the free monoid X∗ on X
(with empty word denoted 1), and modify the definition of Fr(X,A) by replacing
X+ by X∗, thereby giving the larger set Fr′(X,A). The definitions of AX and
BA,X are not altered, the operation 21 : BA,X → BA,X defined by simply setting
21(α) = α for all α ∈ A. The rest of the construction proceeds exactly as before.
We thus obtain the following.

Theorem 5.2. (Fr′(X,A), BA,X) is the free B-monoid on the monoid generators
X and Boolean generators A.

6. Non-finite axiomatizability of if-then-else without 2.

Although composition of transformations with predicates is natural in the setting
of if-then-else with composition, there is nevertheless interest in the situation
in which it is not present. The resulting class is just the class of subreducts of
the B-semigroups of transformations of the form (T (X), 2X), so the solution to the
word problem in the free algebras is essentially covered by the results of Section 5.
Nevertheless, in this section we show that no finite axiomatization is possible for
the class. The main theorem of this section is as follows.

Theorem 6.1. In each of the following cases there is no finite system of first order
sentences to characterise the representable algebras:

• semigroups/monoids of transformations with if-then-else ;
• semigroups/monoids of partial maps with if-then-else and 0;
• semigroups/monoids of binary relations with if-then-else and 0.

Here the monoid identity element (denoted by 1) is to be represented as the diag-
onal relation, while 0 is to be represented as the empty map. We mention also that
each of the cases is easily seen to form a quasivariety (closed under isomorphisms,
ultraproducts, direct products and substructures).

We concentrate on the transformation semigroup case. The non-monoid cases
follow with small adjustments, while the monoid cases are a little messier but similar
and we consider them last.

We begin the nonfinite basis proof by constructing an infinite transformation
semigroup T with if-then-else. We then use its structure to define, for each
n > 2, a two-sorted structure Tn that is not isomorphic to a transformation semi-
group with if-then-else, but such that all n-generated substructures of T4n+1

are isomorphic to a transformation semigroup with if-then-else: in fact they
embed into T.

6.1. Constructing T. Let Z denote the integers and let Z := Z ∪ {∞}, with the
usual order on Z and with i ≤ ∞ for every i ∈ Z. We consider transformations on
the set Z3.

We first consider a map z that constantly maps Z3 to (∞,∞,∞). The following
maps (indexed by i ∈ Z) also send elements of Z3 to the point (∞,∞,∞) unless
defined otherwise.

• fi : (j,∞,∞) 7→ (j, i,∞) when j ≤ i.
• g[

i : (j, i,∞) 7→ (∞,∞, j) when j < i.
• g]

i : (i, i,∞) 7→ (∞,∞, i).
• hi : (j,∞,∞) 7→ (∞,∞, j) when j ≤ i.

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 15

g[
i g]

i si,j gi,j gi,i gj,i ti,i ti,j ui,i ui,j

fi hi−1 ri hi−1 hi−1 hi ri hi−1 hi−1 hi−1 hi−1

sj,i hi−1 ri hi−1 hi−1 hi ri hi−1 hi−1 hi−1 hi−1

Table 1. Non-z products amongst F1.

• ri : (i,∞,∞) 7→ (∞,∞, i).

Notice that fig
[
i = hi−1 and fig

]
i = ri. All other products between the transfor-

mations are equal to z, so these form a subsemigroup of the full transformation
semigroup on Z3. Let us denote the family of transformations considered so far
by F0.

Remark 6.2. If the point (∞,∞,∞) is removed from Z3, we can amend each
transformation in F0 to a partial function. If G0 denotes this family of partial
functions on Z3\{(∞,∞,∞)} then it is easily seen that G0 is a semigroup (under
composition) isomorphic to F0.

Now let us define a subset α of Z3 by α := {(j, i,∞) | j < i <∞}. If we generate
tests from α, we obtain only α′, F := ∅ and T := Z3. Observe that every map in
F0 except for those of the form g[

i agree with z on α, while the maps g[
i agree with

z on α′. Hence if make applications of if-then-else to the transformations in F0,
then we obtain only the following new transformations (that is, not already in F0):

• α[g[
i , fj] =: si,j ;

• α[g[
i , g

]
j] =: gi,j ;

• α[g[
i , hj] =: ti,j ;

• α[g[
i , rj] =: ui,j .

Let us denote the union of F0 with the new set of transformations by F1.
Closure of F1 under multiplication produces no new transformations. Table 1

summarises products amongst elements of Fi that do not produce the value z. The
numbers i and j are arbitrary but distinct elements of Z. Every product of elements
of F1 that does not take the value z can be found by taking a suitable choice of i
and j. For example, s5,−3t−3,5 is not equal to z because if we choose i = −3 and
j = 5 we obtain sj,iti,j = hi−1 = h−4. On the other hand s2,3t2,2 is equal to z: to
find s2,3 on the left of a product in the table one needs j = 2 but then (as i 6= j)
there is no column for tj,j .

Thus, when tests are chosen from the four element Boolean algebra of subsets
{α, α′,F,T}, the system F1 forms a transformation semigroup with if-then-else.
This is T.

Remark 6.3. (Continuing from Note 6.2.) One may similarly close the set G0 un-
der applications of α[,], and produce a semigroup of partial functions on Z3\{(∞,∞,∞)}
with if-then-else that is isomorphic to T.

6.2. Constructing Tn. Table 1 provides us with a purely abstract definition of
T. For each n > 2, consider the alphabet Fn of symbols

{z} ∪ {f i, g
]
i , g

[
i , gi,j , hi, ri, si,j , ti,j , ui,j | i, j ∈ Zn}.

Of course, this alphabet has been chosen in very close analogy to the names of the
transformations in F1. We will use Table 1 to define a product between the elements

16 MARCEL JACKSON AND TIM STOKES

of this alphabet in an obvious way: x · y = xy, where · is the new multiplication
and xy is just the composition of x with y in T, except that subtraction in the
subscripts is to be performed modulo n. For example f0g0,2 = hn−1. Now we want
to add a new Boolean sort B with four elements, just as in T. Since this part is
genuinely isomorphic to the Boolean sort of T, we abuse notation and use the same
symbols α, α′,F,T. We can again use the abstract behaviour of if-then-else on T
to define a ternary operation [,] : B×Fn ×Fn → Fn by setting α[x, y] := α[x, y]
(where α[x, y] is calculated in T). This is easily seen to be well defined. The
corresponding two-sorted algebra is denoted by Tn.

6.3. The nonfinite basis proof.

Lemma 6.4. Tn is not faithfully representable as a transformation semigroup with
if-then-else. Neither is it faithfully representable as a semigroup of binary rela-
tions with if-then-else, provided z is required to be represented as the empty map
0.

Proof. Assume that Tn has been represented (under a representation x 7→ x̂)
as a system of transformations on a set X, with the Boolean sort B a Boolean
algebra of subsets of B and with [,] acting as if-then-else. We show that
this representation cannot be faithful. Now let a ∈ X be such that ĥi(a) 6= ẑ(a);
say ĥi(a) = b (if there are no such a ∈ X, then the representation is not faithful,
as claimed). We show that ĥi(a) = ĥi+1(a) and then by applying induction over
Zn we obtain that all of the ĥi act identically. Hence the representation cannot be
faithful.

Now, f̂iĝi,i = ĥi = f̂i+1 · α[ĝi+1,i+1, ẑ]. If (a)f̂i+1 /∈ α, then

f̂i+1 · α[ĝi+1,i+1, ẑ](a) = α[ĝi+1,i+1, ẑ](f̂i+1(a)) = ẑ(f̂i+1(a)) = f̂i+1ẑ(a) = ẑ(a),

a contradiction. Hence f̂i+1(a) ∈ α and then f̂i+1ĝi+1,i+1(a) = ĝi+1,i+1(f̂i+1(a)) =
b. So ĥi+1(a) = f̂i+1ĝi+1,i+1(a) = b, as required.

The binary relation case is similar: consider a pair (a, b) ∈ ĥi, and use the fact
that ẑ = ∅ to show that (a, b) ∈ ĥi+1. 2

Lemma 6.5. Every n-generated substructure of T4n+1 is faithfully representable
as an if-then-else semigroup of transformations on a set (or as partial maps on
a set, in which z is represented as the empty map).

Proof. Let S be a substructure of T4n+1 generated by at most n elements. Since
each element brings with it either none, one or two numerical subscripts, there
are at most 2n numerical subscripts involved in the generators of S. Since there
are 4n + 1 individual numerical subscripts available, it follows there must be two
consecutive numbers that do not appear in the subscripts of any generator for S. By
applying the obvious automorphism of T4n+1 that increments the indices modulo
4n+ 1, we may assume that these two consecutive numbers are 4n and 0. Then S
is a substructure of the substructure on

{z} ∪ {f i, g
]
i , g

[
i , gi,jhi, ri, si,j , ti,j , ui,j | 1 ≤ i < 4n} ∪ {h0, ti,0 | 0 ≤ i < 4n}

and including all four Boolean tests. By consulting Table 1 it is routine to verify
that this algebra is isomorphic to the substructure of T on the elements of the same
name (just drop the bar over each symbol), hence is faithfully representable. 2

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 17

The following theorem is the transformation semigroup part of Theorem 6.1.

Theorem 6.6. There is no finite system of quasi-identities characterising the qua-
sivariety of all transformation semigroups with if-then-else.

Proof. Let Σ be any finite set of universal sentences holding on the class
of all transformation semigroups with if-then-else. Trivially, Σ involves only
finitely many variables; say n. Then T4n+1 satisfies Σ, by Lemma 6.5, and since
T4n+1 is not isomorphic to any transformation semigroup with if-then-else (by
Lemma 6.4), Σ is not a complete system of axioms. 2

Next is the semigroup of partial maps or binary relations part of Theorem 6.1.

Theorem 6.7. There is no finite system of quasi-identities characterising the
quasivariety of all semigroups of partial maps or of general binary relations with
if-then-else and 0 (representing the empty map).

Proof. The same proof as for Theorem 6.6, but using Note 6.3, and the fact that
T may be represented as partial maps, but Tn not even as general binary relations.
2

6.4. Nonfinite axiomatizability in the monoid case. The underlying semi-
group of transformations in T is not a monoid, so we cannot use it directly to prove
nonfinite axiomatizability of monoids with if-then-else. Nevertheless, we can
proceed by adjoining the identity element to the set of generating transformations
for T . In this subsection we give a sketch of the argument, leaving details to the
reader.

Rather than adjoin 1 directly, we instead adjoin two elements a and a to the set
F0. The element a acts as the identity on α and is equal to z on α′. The function a
is the dual, acting as z on α and 1 on α′. (Of course the full identity element 1 will
be generated as α[a, a].) If we close F0 ∪ {a, a} under composition, only two new
kinds of elements are generated, namely fia and fia (for each i ∈ Z). We denote
the set of generated elements by F+

0 . It is also convenient to follow the idea of
Note 6.2 and write G+

0 for the partial map version of F+
0 . We use the same names

for the partial maps in G+
0 as for transformations in F+

0 .
Next we close under applications of [,]. As before, we can restrict to applica-

tions of the form α[x, y] for x, y ∈ F+
0 , since nested applications of this operation

(or ones using the test α′) can be rearranged to be of this form. Aside from the
element 1 and the four groups si,j , gi,j , ti,j , ui,j generated from F0, we also have
elements of the following new kinds of elements:

• α[a, x] for x ∈ {fia, fia, fi, g
]
i , hi, ri} and for each i ∈ Z;

• α[g[
i , a].

All other combinations produce elements already in F+
0 . Let F+

1 denote the set
of all transformations generated so far. We next claim that F+

1 is closed under
composition.

To see why this is true, it is easier to consider the partial map version of F+
1 ,

which we refer to as G+
1 . The partial map case has the simple advantage that

one is able to talk of functions “mapping into α” (otherwise all maps agree with
z on at least some points of both α and its complement). Of course, all of the

18 MARCEL JACKSON AND TIM STOKES

following statements can be translated back to the transformation setting, but the
explanation is more cumbersome.

Now, to verify that G+
1 is closed under composition, first notice that for any

x ∈ G+
0 except for x ∈ {fi | i ∈ Z} we have that x either maps entirely into

α or entirely into α′. Thus x · α[u, v] either equals xu or xv. In the case of fi

we have fi · α[u, v] = fiau ∪ fiav. Now, if one of fiau or fiav is empty, then
fiau ∪ fiav is equal to an element of G+

0 ⊆ G+
1 ; namely z, fiau or fiav. If both

fiau and fiav are nonempty then it must be that u = g[
i , and v = g]

i , in which case
fi · α[u, v] = hi ∈ G+

0 .
Now consider any two elements α[x1, y1] and α[x2, y2] inG+

1 , where x1, x2, y1, y2 ∈
G+

0 . (All elements of G+
1 can be written in this form since x = α[x, x] always.) We

have that α[x1, y1]α[x2, y2] = α[x1 · α[x2, y2], y1 · α[x2, y2]], and by the above ar-
gument both x1 · α[x2, y2] and y1 · α[x2, y2] are contained in G+

0 . Hence α[x1, y1] ·
α[x2, y2] = α[x1 · α[x2, y2], y1 · α[x2, y2]] ∈ G+

1 , as claimed. Thus we can let T+

denote the if-then-else monoid on G+
1 (or on F+

1 , depending on whether we want
partial maps or transformations).

Now one needs to be able to define the monoid “version” of the finite struc-
tures Tn. We do this the same way: by defining everything according to their
behaviour in T except that the indices from Z are to be interpreted modulo n.
To establish the validity of this definition, one could in principle build up a table
extending Table 1. However this is tedious and unnecessary, since the two required
features of such a table are clear:

• multiplication (and applications of α[,]) between elements is not affected
by any ordering of the indices, only by whether or not they coincide;

• if S ⊆ F+
0 ∪ {1} is a finite set of generators, and SZ is the finite subset of

Z consisting of all indices of elements of S, then every index i appearing in
the subalgebra generated by S is either contained in SZ or is one less than
an element of SZ.

The rest of the proof carries over without any change, giving the monoid versions
of Theorems 6.6 and 6.7, and hence the remaining cases of the main Theorem 6.1.

6.5. Adjoining while. Another very common programming construction beyond
if-then-else is the operation of while. Indeed, the language of “while programs”
is frequently considered as a basic formal language under which algorithms can
be described: at the abstract level it consists precisely of program composition,
if-then-else, and while. The while construction inevitably leads to programs
that do not halt on all inputs: for example, if the identity element 1 is to be included
(the skip program for example), then the program “while T do 1” halts on no
inputs at all; under the relational semantics for programs as binary relations, this
means that while T do 1 is the empty map. In particular, this shows that it does
no harm to assume the presence of a nullary 0 representing the empty map. We
now wish to observe how the methods of the present section can be extended to
include while in the partial map (modelling deterministic programs), or general
binary relation (modelling nondeterministic programs) setting.

First observe that T+ satisfies the equation x2 = x3, as is easily verified. In this
case it is also routinely verified that the while operation is already represented as
a term function, namely

while β do x = β[x · β[x · β[0, 1], 1], 1],

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 19

since if β is true after both the first and second applications of x, then β will be
true after any number of applications of x, and while β do x is undefined at such
a point (that is, acts like 0).

Hence one can adjoin the operation of while to T+, defined in accordance with
the rule just observed, and the main proofs of this section continue to hold.

Corollary 6.8. The universal theory of algebras of functions (or binary relations)
with if-then-else, while and 1 has no finite axiomatization. Furthermore, there
is no finite set of first order universal sentences characterising the isomorphic copies
of the finite algebras of partial maps or of binary relations.

In [9] the authors showed that in the partial map case, if one additionally includes
the dynamic logic operators [p]β and 〈p〉β (which are essentially the analogues of
the predicate transformer corresponding to composition of transformations with
predicates, as considered in earlier sections), then the relevant class of finite algebras
can be characterised up to isomorphism by a finite system of implications.

7. Special kinds of tests in B-semigroups

7.1. Equality tests. A B-semigroup (S,B) is agreeable if it additionally has an
operation ∗ : S × S → B making it an agreeable B-set and satisfying the law

s(t ∗ u) = (st ∗ su).

(T (X), 2X) (where X is a set) is an agreeable B-semigroup if ∗ is defined as in
Section 2. An agreeable B-monoid is an agreeable B-semigroup which is a B-monoid;
again (T (X), 2X) is an example.

Theorem 7.1. Every agreeable B-semigroup/monoid can be embedded in one of
the form (T (X), 2X) for some set X.

Proof. Let (S,B) be an agreeable B-semigroup. We shall show that the represen-
tation described prior to the statement of Theorem 3.7 also represents ∗ correctly.
We need only do this for a particular (φF , fF) pair.

Now for x ∈ S/EF , x ∈ fF (a ∗ b) if and only if (xa ∗ xb) = x ∧ (a ∗ b) ∈ F , if
and only if (xa, xb) ∈ EF , if and only if ψa(x) = xa = xb = ψb(x), if and only if
x ∈ φF (a)∗φF (b). Regarding 1 now, note that 1 ∈ fF (a∗ b) if and only if a∗ b ∈ F ,
if and only if (a, b) ∈ EF , if and only if ψa(1) = a = b = ψb(1), if and only if
1 ∈ φF (a) ∗ φF (b). Hence fF (a ∗ b) = φF (a) ∗ φF (b) as asserted.

The proof of the monoid case is just a simplified version of the non-monoid case
just presented, in which the special case of the added-in element 1 need not be
considered. 2

There is of course interest in free agreeable B-semigroups and the equational
problem, as well as the question of axiomatizability in the absence of transformation-
predicate composition. We conjecture that the equational problem has a similar
solution to that presented for B-semigroups in Section 5. (An analogous case for
partial functions with domain and ∗ has such a solution: see [8].) But we observe
that the non-finite basis argument given in Section 6 will not carry over to the
agreeable case. We therefore pose as an open problem the question of finite axiom-
atizability of transformation semigroups with if-then-else and equality tests.

20 MARCEL JACKSON AND TIM STOKES

7.2. Fixed point tests. Closely related to the equality test is the fixed point test.
For a transformation f ∈ T (X), define I(f) ∈ 2X as follows:

I(f) = {x ∈ X | f(x) = x}.
(Again, strictly we define it to be the predicate on X having this truth set.) In an
agreeable B-monoid (S,B), this operation is already modelled: I(a) = a ∗ 1, where
1 is the identity element of S. However, it can be modelled independently of ∗.

The operation I has been considered in a general semigroup setting and in a
partial function setting in the papers [11] and [10], where it is called an “interior
operation” because of its formal resemblance to an interior operator in topology.

In contrast to ∗, there is no “flat” version of I: it is inherently related to trans-
formations. Also note that the B-semigroup representation of Section 3 does not
represent I correctly, because the added-in element 1 is not fixed by any ψa. Conse-
quently we restrict attention to B-monoids, leaving the more general case for future
work.

A B-monoid (S,B) is interior if it is equipped with an operation I : S → B
satisfying the following equivalence: for all s, t ∈ S and α ∈ B:

α[st, s] = s ⇔ α ≤ s · I(t).
Hence the class of interior B-monoids is a finitely based quasivariety, clearly con-
taining every example of the form (T (X), 2X).

Proposition 7.2. For F a filter of B, (ab, a) ∈ EF if and only if a · I(b) ∈ F .

Proof. Suppose (ab, a) ∈ EF ; then α[ab, a] = a for some α ∈ F so α ≤ a · I(b),
and so a · I(b) ∈ F . Conversely, if a · I(b) ∈ F , then (a · I(b))[a, b] = b shows that
(a, b) ∈ EF . 2

Theorem 7.3. Every interior B-monoid can be embedded in one of the form
(T (X), 2X) for some set X.

Proof. We show that the representation (φ, f) of Section 4 represents I(a) cor-
rectly as the fixed set of the image of a. We need only consider a particular (φF , fF)
pair. Now for x ∈ S/EF , x ∈ fF (I(a)) if and only if xI(a) ∈ F , if and only if
(xa, x) ∈ EF , if and only if ψa(x) = xa = x, if and only if x ∈ I(φF (a)). 2

References

[1] G.M. Bergman, Actions of Boolean rings on sets, Algebra Univers. 28 (1991), 153–187.
[2] S.L. Bloom and R. Tindell, Varieties of “if-then-else”, SIAM J. Comput. 12 (1983), 677–707.
[3] M.R. Bulmer, D. Fearnley-Sander and T. Stokes, Towards a calculus of algorithms, Bull.

Austral. Math. Soc. 50 (1994), 81–89.
[4] E. W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs,

Comm. ACM 18 (1975), 453–457.
[5] I. Guessarian and J. Meseguer, On the axiomatization of “if-then-else”, SIAM J. Comput. 16

(1987), 332–357.
[6] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. Assoc. Comput. Mach.

12 (1969) 576–580.
[7] M. Jackson and T. Stokes, Agreeable semigroups, J. Algebra 266 (2003), 393–417.
[8] M. Jackson and T. Stokes, Identities in the algebra of partial maps, Internat. J. Algebra

Comput. 16 (2006), 1131–1159.
[9] M. Jackson and T. Stokes, Towards an algebra of functions and deterministic computation,

submitted.

SEMIGROUPS WITH IF-THEN-ELSE AND HALTING PROGRAMS 21

[10] M. Jackson and T. Stokes, Algebras of partial maps, to appear in Proceedings of the Special
Interest Meeting on Semigroups and Related Mathematics, University of Sydney, 2005.

[11] A.V. Kelarev and T. Stokes, Interior algebras and varieties, J. Algebra 221 (1999), 50–59.
[12] D.C. Kozen, On Hoare Logic and Kleene algebra with Tests, ACM Trans. Comput. Logic 1

(2000), 60–76.
[13] B. Möller and G. Struth, Algebras of modal operators and partial correctness, Theoret. Comp.

Sci. 351 (2006), 221–239.
[14] E.G. Manes, Adas and the equational theory of if-then-else, Algebra Univers. 30 (1993),

373–394.
[15] J. McCarthy, A basis for a mathematical theory of computation, in P. Braffort and D.

Hirschberg (eds.), Computer Programming and Formal Systems. North-Holland (1963), 33–70.
[16] A.H. Meklar and E.M. Nelson, Equational bases for if-then-else, SIAM J. Comput. 16 (1987),

465–485.
[17] D. Pigozzi, Equality-Test and If-Then-Else Algebras: Axiomatization and Specification,

SIAM J. Comput. 20 (1991), 766–805.
[18] V.R. Pratt, Dynamic algebras: Examples, constructions, applications, Technical Report

MIT/LCS/TM-138, M.I.T. Laboratory for Computer Science, July 1979.
[19] B.M. Schein, Relation algebras and function semigroups, Semigroup Forum 1 (1970), 1–62.
[20] B.M. Schein, Lectures on semigroups of transformations, Amer. Math. Soc. Translat. Ser. 2.

113 (1979), 123–181.
[21] T. Stokes, Sets with B-action and linear algebra, Algebra Univ. 39 (1998), 31–43.
[22] T. Stokes, On Eq-monoids, Acta Sci. Math. (Szeged) 72 (2006), 481–506.

Department of Mathematics, La Trobe University, Melbourne, Victoria 3086, Aus-
tralia

E-mail address: m.g.jackson@latrobe.edu.au

Department of Mathematics, University of Waikato, Hamilton, New Zealand
E-mail address: stokes@math.waikato.ac.nz

