512 research outputs found

    Efficient search for inputs causing high floating-point errors

    Get PDF
    pre-printTools for floating-point error estimation are fundamental to program understanding and optimization. In this paper, we focus on tools for determining the input settings to a floating point routine that maximizes its result error. Such tools can help support activities such as precision allocation, performance optimization, and auto-tuning. We benchmark current abstraction-based precision analysis methods, and show that they often do not work at scale, or generate highly pessimistic error estimates, often caused by non-linear operators or complex input constraints that define the set of legal inputs. We show that while concrete-testing-based error estimation methods based on maintaining shadow values at higher precision can search out higher error-inducing inputs, suitable heuristic search guidance is key to finding higher errors. We develop a heuristic search algorithm called Binary Guided Random Testing (BGRT). In 45 of the 48 total benchmarks, including many real-world routines, BGRT returns higher guaranteed errors. We also evaluate BGRT against two other heuristic search methods called ILS and PSO, obtaining better results

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Bounding Variable Values and Round-Off Effects Using Handelman Representations

    Full text link

    Unbounded Superoptimization

    Get PDF
    Our aim is to enable software to take full advantage of the capabilities of emerging microprocessor designs without modifying the compiler. Towards this end, we propose a new approach to code generation and optimization. Our approach uses an SMT solver in a novel way to generate efficient code for modern architectures and guarantee that the generated code correctly implements the source code. The distinguishing characteristic of our approach is that the size of the constraints does not depend on the candidate sequence of instructions. To study the feasibility of our approach, we implemented a preliminary prototype, which takes as input LLVM IR code and uses Z3 SMT solver to generate ARMv7-A assembly. The prototype handles arbitrary loop-free code (not only basic blocks) as input and output. We applied it to small but tricky examples used as standard benchmarks for other superoptimization and synthesis tools. We are encouraged to see that Z3 successfully solved complex constraints that arise from our approach. This work paves the way to employing recent advances in SMT solvers and has a potential to advance SMT solvers further by providing a new category of challenging benchmarks that come from an industrial application domain

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    • …
    corecore