
Unbounded Superoptimization
Abhinav Jangda

Indian Institute of Technology (BHU), India
Greta Yorsh

Queen Mary University of London, UK

Abstract
Our aim is to enable software to take full advantage of the
capabilities of emerging microprocessor designs without
modifying the compiler.

Towards this end, we propose a new approach to code gen-
eration and optimization. Our approach uses an SMT solver
in a novel way to generate efficient code for modern archi-
tectures and guarantee that the generated code correctly
implements the source code. The distinguishing character-
istic of our approach is that the size of the constraints does
not depend on the candidate sequence of instructions.

To study the feasibility of our approach, we implemented
a preliminary prototype, which takes as input LLVM IR code
and uses Z3 SMT solver to generate ARMv7-A assembly.
The prototype handles arbitrary loop-free code (not only
basic blocks) as input and output. We applied it to small
but tricky examples used as standard benchmarks for other
superoptimization and synthesis tools. We are encouraged
to see that Z3 successfully solved complex constraints that
arise from our approach.

This work paves the way to employing recent advances in
SMT solvers and has a potential to advance SMT solvers fur-
ther by providing a new category of challenging benchmarks
that come from an industrial application domain.

CCS Concepts • Software and its engineering→Com-
pilers; • Theory of computation→ Logic and verification;

Keywords superoptimization, software synthesis, code gen-
eration and optimization, SMT solver, constraint solvers, first
order logic, instruction set architecture

ACM Reference Format:
Abhinav Jangda and Greta Yorsh. 2017. Unbounded Superoptimiza-
tion. In Proceedings of 2017 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!’17). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3133850.3133856

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00
https://doi.org/10.1145/3133850.3133856

1 Introduction
Production compilers such as GCC, LLVM, Intel C compiler,
and Microsoft Visual C compiler can generate efficient code
for popular target hardware. Ideally, advances in hardware
design would directly translate to performance improve-
ments in software. In reality, this involves a manual process
of tuning a sophisticated production compiler or hardware-
specific rewriting of code. This process is challenging even
for the few experts who possess the required range of skills.
Moreover, any errors introduced in this process affect the
entire software stack and might compromise its reliability
and security.

The growing variety and complexity of hardware designs,
spanning the spectrum of low-power and high-performance
computing, makes it even more challenging for software
development to keep up. Practitioners argue that general-
purpose optimizing compilers are falling further behind the
actual capabilities of modern processors. 1
The aim of our work is to enable software to take full

advantage of the capabilities of emerging microprocessor
designs without modifying the compiler.
Towards this end, we propose a new approach to code

generation and optimization. It uses constraint solving in a
novel way to generate efficient code and guarantee that the
generated code correctly implements the source code.
We define algorithms parametric in the formal specifi-

cation of application level instruction semantics (including
control, data access in registers and memory, bitwise opera-
tions, vector operations) and a separate cost model of these
instructions. Varying the parameters allows us to (i) target
new microarchitectures without changing the compiler, and
(ii) develop cost models with different levels of precision, for
example proprietary models can be more accurate.
Our work is inspired by recent advances in Satisfiabil-

ity Modulo Theories (SMT) and the growing availability of
formal specifications for Instruction Set Architectures (ISAs).

Satisfiability Modulo Theories refers to the following
decision problem: given a first order logic formula, is the
formula satisfiable with respect to a combination of back-
ground theories of classical first-order logic with equality.
SMT can also be thought of as a form of constraint satis-
faction problem. The problem is decidable for interesting
fragments of first order logic. Modern SMT solvers such as
Z3 [11] and CVC4 [3] are very efficient in handling known
decidable fragments. Moreover, these solvers use heuristics

1ETAPS 2015 Inivited Tutorial titled “The death of optimizing compilers”
by Daniel J. Bernstein.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159077639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3133850.3133856
https://doi.org/10.1145/3133850.3133856
https://cr.yp.to/talks/2015.04.16/slides-djb-20150416-a4.pdf

Onward!’17, October 25–27, 2017, Vancouver, Canada Abhinav Jangda and Greta Yorsh

and user-defined strategies to handle arbitrary first order
formulas. If an SMT solver proves that a formula is satisfi-
able, the solver can also produce (a finite representation of)
a model of the formula.
Our approach relies on the theory of bit-vectors in com-

bination with extensional arrays and the standard equality
and uninterpreted functions, which are decidable for quan-
tifier free formulas. The novelty of our approach lies in the
judicious use of quantifiers.

Superoptimization and Synthesis using SMT Solvers
Our approach is closely-related to superoptimization and syn-
thesis [19, 20, 29, 35, 40, 42]. These methods search through
the space of candidate instruction sequences of increasing
length and use SAT or SMT solvers to check whether a candi-
date correctly implements the source code. This works well
for optimizing short straight-line code. With the increase in
length of the target sequence, the search space dramatically
increases, posing a challenge for existing approaches.

Our approach to code generation and optimization uses an
SMT solver in a novel way. The distinguishing characteristic
of our approach is that the size of the constraints does not
depend on the candidate instruction sequence.

We believe that this is key to scalability, in particular when
going beyond superoptimization of straightline code: a solver
has the potential to reuse more of its reasoning during its
search and incorporate cost models into the search. It also
provides a way to support cost models that accurately reflect
modern microarchitecture features (such as multiple issue,
different register banks, different decode speeds, memory
latency, etc), whereas for standard superoptimization and
synthesis the cost is usually the length of the generated
sequence.
Our encoding is closely related to Denali [21] in that it

expresses all target instruction sequences of any length that
correctly implement the source code. The authors of Denali
make the following observation about using such an encod-
ing, in the early days of SMT solvers: “Conjectures of this
form are daunting for two reasons: First, the universal quan-
tifier nested within the existential quantifier is difficult for
automatic theorem provers to handle. Second, the many cases
in the definitions [of ISA semantics] tend to lead automatic
theorem provers into a morass of case analyses.”
To cope with it, Denali implemented a specialized solver

based on equality-preserving transformations. These trans-
formations were designed by experts and implemented using
matching on E-graphs. Today, E-graphs matching is tightly
integratedwithinmodern SMT solvers [12]. Moreover, recent
advances in SMT solvers include solving optimization prob-
lems [6, 7], strategies to guide heuristic search performed
by highly-optimized SMT solvers [13] quantifiers [5, 34],
bit-vectors [16, 49], and model generation [48].

These advances in SMT solvers provide an unprecedented
opportunity for optimizing compilers. Nevertheless, all of

the recent work on superoptimization and synthesis still
avoids quantifier alternation in the encoding they pass to
SMT solvers. We set about to reexamine this design choice.

Shifting the Search into the Solver Instead of searching
through the space of candidate instruction sequences and
then calling the solver on some of them, our approach is
to guide the search performed within an SMT solver. SMT
solvers are designed to prune incorrect solutions from the
search space. We conjecture that tighter integration with an
SMT solver will provide us with an efficient way to search
through the much smaller space of correct solutions towards
finding an optimal one.
For this idea to work, our encoding in combination with

solver strategies should capture sufficient information about
structure of the source program and the target architecture.
Then, a variety of application domain specific techniques
can be used within an SMT solver to speed up the search.
For example, data-driven stochastic methods related to

those used for superoptimization [35, 37] can also be use-
ful within an SMT solver to speed up the search, e.g, [16].
Another example is divide-and-conquer strategies used in
synthesis [42] to break the formula into independent sub-
formulas. SMT solvers perform this kind of operations and
may be able to make a better-informed decision about it.
The first step will be to explore existing algorithms and

tactics exposed by SMT solvers for guiding the search. Then,
we expect that some changes to solver’s implementation may
be needed to speed up the search and possibly to improve
quantifier instantiation for our application domain.

Developing methods through which users of SMT solvers
can control the heuristic search was posed as a research chal-
lenge in SMT community [13]. Our encoding can serve as
a source of benchmarks to drive changes in solvers, both
in terms of algorithms and tactics exposed to users. As the
solvers evolve, there may be better ways to express the con-
straints, for example using different combination of theories
or tactics. Our infrastructure enables us to experiment with
different ways of expressing the constraints.
Our encoding can be used in a range of contexts includ-

ing traditional superoptimization, code generation, binary
translation, binary synthesis, binary optimization, peephole
generation, and possibly even dynamic optimization.

Compilation Time Traditionally, stringent requirements
on compilation time dictate compromises on the quality of
generated code. Modern optimizing compilers apply par-
ticular sequences of transformation, each of which makes
heuristic decisions about performance of some aspect of
generated code. Decisions are often made without regard to
dependencies between transformations. For example, there
are dependencies between register allocation, instruction
selection, instruction scheduling, and peephole optimiza-
tions. Such decisions are necessarily suboptimal and easy
to get wrong. The space of possible transformations and

Unbounded Superoptimization Onward!’17, October 25–27, 2017, Vancouver, Canada

their ordering has been the subject of extensive research.
Recently, Milepost [17] used machine learning to find best
combination.

Superoptimization, pioneered by [29] avoids, to some ex-
tent, the problem of ordering transformations, and eliminates
the need for peepholes optimizations. In some cases, it can
make optimal decisions for the combination of register al-
location, instruction selection and instruction scheduling.
Superoptimization approach can generate code that cannot
be produced by existing compilers or methods such as [17].
Superoptimization is considered too slow to use during

software development, but may be acceptable in some situ-
ations, such as optimizing the body of hot loops and com-
pute kernels for a release version, or at compiler develop-
ment time. In [2, 8], superoptimization is used to generate
a library of peephole transformations from ISA specifica-
tions. These tools need to rerun whenever ISA or cost model
changes and might produce too many peephole transfor-
mations that might slow down compilation. To address it,
Alive [28] involves compiler developers in defining peep-
holes that deemed to be beneficial.

Our approach provides the programmerwith a fine-grained
control on how much time is spent in compilation vs the
quality of generated code. If a programmer increases the
time budget allotted for compilation, our approach will gen-
erate increasingly better code in terms of running time, code
size, power consumption, energy efficiency, etc. With our
approach, code generation and optimization can stop at any
time with a correct (but possibly suboptimal) solution, as
explained in Section 2. Moreover, existing solution can be
improved upon later on when budget increased. In contrast,
traditional superoptimization cannot return a correct solu-
tion until the end.

Correctness Guarantees Our approach provides correct-
ness guarantees per compilation, in the sense of translation
validation [4, 31, 43]. An alternative approach is to prove
correctness of the compiler itself, e.g., [50]. Recently, Com-
pCert [25] and CakeML [44] have been able to certify their
compiler backends that implement sophisticated optimiza-
tion, getting closer to the quality of code generated by pro-
duction compilers. It would be interesting to apply these
techniques to certify a superoptimizer.

Formal Specification of ISAs There are several versions
of accurate, detailed, and nearly-complete ISA specifications
for common architectures. Hardware design vendors have
proprietary ISA specifications. Notably, ARM’s official formal
ISA specification for ARMv8-A, described in [33], has just
been released [1]. Other open-source versions originated
from the research community, such as [14, 15, 18, 26, 27].
They are expressed using domain specific languages, some
of which can be automatically translated to higher order logic
for use in mechanized software verification with interactive
theorem provers such as Coq, HOL, Isabelle, and ACL2. We

are not aware of a specification language that provides an
interface to first order logic or SMT solvers as required for
our approach.

Preliminary Prototype We implemented a preliminary
prototype of our approach, using the LLVM compiler and
the Z3 SMT solver, targeting ARM. The prototype uses a
small subset of ARMv7-A, sufficient by design for our mi-
crobenchmarks so far. We are in the process of integrating
ARM’s official formal ISA specification for ARMv8-A [1].

The prototype supports arbitrary loop-free code (not only
basic blocks) as input and output. Most of our benchmarks
are straightline code.

The prototype successfully handles some small but tricky
examples used as standard benchmarks for other superopti-
mization and synthesis tools. The quality of code generated
by our prototype compares favorably with production com-
pilers and other superoptimization and synthesis tools. We
have not compared performance because recent superopti-
mization tools [35, 42] target IA-32 and x86-64 architectures.
To the best of our knowledge, ours is the first application of
superoptimization to a modern ARM architecture.

1.1 Contributions of this Paper
• The idea of shifting the search for optimal instruction
sequences into the SMT solver. This provides a novel way
of structuring the search.
• A first-order encoding that realizes this idea.
• A preliminary prototype that enables us to experiment
with different ways to express the encoding using SMT
solvers. This provides the infrastructure for the feasibility
study reported in this paper, and further experiments.
• A feasibility study that provides an early indication of the
viability of our approach.

Novelty of the Encoding The key novelty is that we en-
code the semantics of all instruction sequences (of unbounded
length), rather than encoding the semantics of some candi-
date instruction sequences of a given length. This is achieved
using more quantifiers than existing approaches.

An additional novel aspect of our encoding is that it goes
beyond straight-line code: it can handle loop-free code as
input and output. The simulation relation is also inferred by
the solver. This is achieved by combining several techniques
inspired by existing work, as discussed in Section 3.

New Benchmarks for SMT Solvers This work paves the
way to employing recent advances in SMT solvers and has a
potential to advance SMT solvers further by providing a new
category of challenging benchmarks that people care about.
That is, benchmarks that come from an industrial application
domain, not randomly generated.

Our prototype generates constraints that combine quanti-
fiers, bit-vectors, and arrays. Even if currently SMT solvers
cannot handle these constraints very well, they can serve as

https://coq.inria.fr
https://hol-theorem-prover.org
https://isabelle.in.tum.de
http://www.cs.utexas.edu/users/moore/acl2/

Onward!’17, October 25–27, 2017, Vancouver, Canada Abhinav Jangda and Greta Yorsh

benchmarks. We hope they can be included in Satisfiability
Modulo Theories Competition (SMT-COMP), known as a
strong driver of research and performance improvements of
SMT solvers.

Feasibility Study In Section 4, we report on experiments
we performed to find out whether an SMT solver is at all
capable of solving the complex constraints that arise from
our approach. The key technical challenge has to do with
quantifiers present in our encoding, but not in other methods.
We are encouraged that Z3 solved them, but it took a long
time. We do not have evidence yet that our approach scales
better than existing approaches or generates better code.

Scope of the Experiments There are many important as-
pects that we have not explored yet, including:
• tactics for controlling the search from within Z3,
• cost functions other than the standard one, which is length
of the instruction sequence,
• optimization queries using MaxSMT,
• handling memory operations, which results in one quanti-
fier alternation in the constraints.

2 Overview
The problem we are addressing can be stated as follows.
Given code p, generate code s such that
• (Correctness) s implements p, i.e., the observable behav-
iors of s are a subset of the observable behaviors of p.
• (Optimality) the cost of s is minimal with respect to cost
function c , i.e., c(s) =min{c(s ′) | s ′ implements p}

This problem statement is parametric in the source and target
languages as well as the cost function of the output code.
This problem arises in several contexts with different

source and target languages. In the context of an optimizing
compiler and superoptimization, both the input p and the
output s code is expressed in compiler’s intermediate repre-
sentation, such as LLVM IR or GCC RTL. In the context of
code generation, the input p is an intermediate representa-
tion and the output s is assembly (or machine code) of the
target architecture. For binary translators, both the input p
and the output s are in assembly (or machine code) corre-
sponding to the source architecture and target architecture,
respectively.
Synthesis does not fit with the problem statement above,

because synthesis takes as input a first-order logic formula,
rather than code p, as explained in [42]. Our approach can
also be used in the context of synthesis, because the first
step of our approach is to generate a logical formula that
corresponds to p in a target-independent way. We can skip
this step in the context of synthesis and use the input formula
directly in place of the logical formula for p.

In our prototype, the input p is expressed in LLVM IR and
the output s is generated as ARMv7-A assembly.

Algorithm 1 Unbounded Superoptimization (novel)
Parameters: target architecture specification a, cost function c
Input: code p
Output: code s that implements p in a with minimal cost c(s), or

FAIL
1: function UnboundedSuperoptimizer(p,a, c)
2: χ ← encodeCorrectness(p,a)
3: if not satisfiable(χ) then return FAIL
4: repeat
5: m ← getModel(χ)
6: χ ← χ ∧ encodeBound(m, c)
7: until not satisfiable(χ)
8: s ← getCode(m)
9: return s

2.1 Algorithm
A pseudocode of unbounded superoptimization is shown
in Algorithm 1. It is parametric in the semantics of the tar-
get architecture a and the cost function c . It takes as input
code p and returns code s . In Line 2, encodeCorrectness,
parametric in a, takes p and returns a formula χ , such that
if χ is satisfiable, then there exists a target instruction se-
quence that correctly implements the source code. Note that
encodeCorrectness captures the correctness requirement
above, but does not place any requirements on the cost of
the generated sequence. See details of encodeCorrectness
in Section 2.2.
Line 3 checks satisfiability of χ to ensure existence of

a model. The loop in Lines 4-7 searches for a model with
the minimal cost. In Line 5, getModel returns a modelm
of χ . In Line 6, encodeBound, parametric in c , takes as
input the current model m and returns a formula that is
satisfiable if there exists a model whose cost according to
c is less than that of m. This formula is conjoined with χ .
Line 7 checks satisfiability of new χ . If χ is not satisfiable,
then m represents a target instruction sequence with the
minimum cost. In Line 8, getCode returns the instruction
sequence directly represented by the modelm, as described
in Section 2.2.

2.2 Our Encoding
Given code p and target architecture specification a, our
approach generates three kinds of constraints:
• semantics of source code p
• semantics of an arbitrary instruction sequence in the target
architecture a
• observational equivalence of p and an arbitrary target
instruction sequence: if the input states of p and the target
sequence are equivalent, then the corresponding output
states are equivalent.

A solution to the conjunction of all these constraints directly
represents a target instruction sequence that correctly im-
plements the source code.

http://smtcomp.sourceforge.net

Unbounded Superoptimization Onward!’17, October 25–27, 2017, Vancouver, Canada

In Line 2 of Algorithm 1, encodeCorrectness(a,p) re-
turns the formula

χ
def
= ∀x ,x ′,y,y ′.p̂ ∧ â ∧ ô

where p̂ is a symbolic representation of p, x and x ′ are input
and output of p, respectively, y and y ′ are input and output
of a target sequence, ô is equivalence constraint over the
observable portion of the program state, and â is the sym-
bolic representation of the semantics of target instruction
sequences of arbitrary length:

â
def
= ∀j < n.

∧
i ∈I

(instr (j) = i → τi (state(y, j), state(y, j + 1)))

where n is a free variable denoting the length of the output
instruction sequence, I is the set of all possible target instruc-
tions in a and τi is the semantics of instruction i . Therefore,
the (large) formula â is the same for all input programs p.
An element in I represents a concrete instruction. Each

opcode, condition, flags, and combination of operands de-
fines a separate concrete instruction. For example, ADD R0,

R1, R2 and ADD R3, R4, R5 are both in I . Effectively, I is just
the set of unique identifiers of instructions in a.
For every instruction i ∈ I , the formula τi is satisfied

by a pair of states σ ,σ ′ if and only if the execution of i
starting in σ can terminate in state σ ′, i.e., τi specifies the
operational semantics of instruction i . In the presence of
non-determinism (for example, allocation), τi may introduce
an existential quantifier.
The target instruction sequence is represented using the

function instr . For every j = 1, . . . ,n, instr (j) denotes the in-
struction identifier i at program location j . Therefore, there is
a direct translation from a model to an instruction sequence.
The semantics of the sequence is constrained using state
function. For every j = 1, . . . ,n, state(y, j) denotes the state
before the instruction at program location j executes, and
state(y, j + 1) denotes the state after the instruction at pro-
gram location j executes, unless the instruction transfers
control elsewhere.

Finally, equivalence constraints are of the form

ô
def
= (rep(x) =o state(y, 0)) → (rep(x ′) =o state(y,n))

where rep is a function that maps values of the input code
to those in the target code, and =o is an observational equiv-
alence relation on states, that may take into account only
portion of the state (e.g., return value and memory). In the
presence of non-determinism (for example, allocation), =o
introduces an existential quantifier.

Cost Functions For a standard cost function, encodeBound
in Line 6 of Algorithm 1 produces the formula n < m(n),
wherem(n) is the value assigned to the logical variable n in
modelm.

Models A model m of χ can be directly translated to an
implementation s of p for the target architecture a. The set of

models of χ is exactly the set of all correct implementations
of p for the target architecture a.

A model of χ represents code, not program states or aspect
of the code, such as the names of register to be used with a
particular instruction template in [19, 42]. This is conceptu-
ally different from existing superoptimization and synthesis
approaches, as discussed in Section 2.3.

2.3 Comparison to Existing Methods
Consider pseudocode in Algorithm 2, which shows a basic
superoptimizer. In every iteration of the outer loop in Lines 4-
11, n increases. The inner loop in Lines 5-10 iterates over In ,
i.e., all instruction sequences of length n. For each candidate
instruction sequence s , check returns PASS if and only if s
passes all tests. In Line 7, encode(p,s) return formula φ that
is satisfied if s does not correctly implement p. Line 8 checks
satisfiability of φ. In Line 9, getModel returns a model of
φ. This model is a counterexample to the assertion that s
correctly implements p, i.e., cex represents an execution of
s not allowed by p. In Line 10, getTests creates new tests
based on cex . The algorithm uses them to avoid generating
similar ones in the following iterations.

Algorithm 2 Basic superoptimization (existing)
Parameters: target architecture specification a
Input: code p
Output: code s that implements p with a shortest sequence from I
1: function superoptimizer(p, I)
2: Tests ← ∅
3: n ← 0
4: while true do
5: for all s ∈ In do
6: if check(s,Tests) = PASS then
7: φ ← encode(p, s)
8: if not satisfiable(φ) then return s

9: cex ← getModel(φ)
10: Tests ← Tests ∪ getTests(p, cex)
11: n ← n + 1

Tests are typically employed by superoptmization and syn-
thesis tools to quickly and cheaply eliminate some candidate
instruction sequences, before calling the solver to check cor-
rectness. This is the main way in which existing methods
reuse reasoning made by previous calls to the solver. Mod-
ern superoptimizers also prune the search space In before
iteration n to avoid some obviously redundant sequences.
There are conceptual differences between encode(p,s)

in Algorithm 2 and encodeCorrectness(p,a) in Algorithm 1.
First, φ encodes counterexamples while χ encodes correct

code. Our approach starts the search with a correct but pos-
sibly suboptimal sequence and repeatedly calls the solver to
find a better one. In contrast, existing methods start with a
candidate sequence that is expect to be optimal and call the
solver to check correctness. Therefore, our method can be

Onward!’17, October 25–27, 2017, Vancouver, Canada Abhinav Jangda and Greta Yorsh

1 int sign (int x) {

2 if (x < 0) return -1;

3 if (x > 0) return 1;

4 return 0;

5 }
Figure 1. Running example: C code.

stopped at any time with a correct (but possibly suboptimal)
solution, whereas existing methods cannot return a correct
solution until the end.
Second, the size of φ depends on n, whereas the size of

χ depends on the size of a. That is, the size of φ necessary
increases on every iteration of the outer loop. While a is
very large, it remains the same throughout Algorithm 1,
whereas s significantly changes on every call to the solver
in Algorithm 2. Each call to the solver in Algorithm 1 may
take longer than solver calls in Algorithm 2, because χ is a
more complex quantified formula, compared to φ, and the
solver is expected to search a larger space. On the other
hand, the solver has more opportunities to reuse reasoning
in Algorithm 1, which should reduce the total time spent in
the solver.
Note that as presented in Line 6 of Algorithm 1, the size

of χ increases in every iteration. This is an optimization that
allows the solver to reuse reasoning from previous calls. If
the size of χ is too big, all the constraints produced by en-
codeBound in previous iterations can be discarded, without
changing the meaning of the formula, to guarantee that the
size of χ in all calls to the solver is the same. This should
not be necessary, because constraints produced by encode-
Bound tend to be small.

Counterexample Guided Inductive Synthesis, e.g., [19, 42],
use templates instead of concrete instructions to reduce the
encoding size. These methods call the solver to find template
parameters. We also use templates to reduce the size of our
encoding of the instruction semantics. Their constraints de-
pend on the length of the sequence of instruction templates,
ours does not.

3 Constraints
In this section, we provide more details about the constraints
generated by our prototype. Our encoding of LLVM IR ex-
tends [28] with the ability to handle phi nodes, inspired
by symbolic execution and a symbolic encoding of out-of-
ssa transformation. Our encoding of ARM ISA semantics
is closely related to the two-vocabulary formulas for ISA
semantics in [42], and extends it with branches.
We demonstrate these aspects of our constraints on a

traditional example: the sign function from [29], shown
in Fig. 1. Consider the corresponding LLVM IR in Fig. 2.

1 def i32 sign (i32 x):

2 ; <label >:L0

3 v1 = icmp slt i32 x, 0

4 br i1 v1, label L1, label L2

5 ; <label >:L1

6 br label L5

7 ; <label >:L2

8 v2 = icmp sgt i32 x, 0

9 br i1 v2, label L3, label L4

10 ; <label >:L3

11 br label L5

12 ; <label >:L4

13 br label L5

14 ; <label >:L5

15 v3 = phi ([L1, -1], [L3, 1], [L4, 0])

16 ret i32 v3

Figure 2. Running example: LLVM IR produced by Clang.

1 CMP R0, #0

2 MOVGT R0, #1

3 MOVLT R0, #-1 ; Return value in R0

Figure 3. Running example: ARM Instruction Sequence.

L̂0↔ ρ1 = (ρx < 0)

∧

(
(ρ1 = true) ∧ L̂1

)
∨

(
(ρ1 = false) ∧ L̂2

)
L̂2↔ ρ2 = (ρx > 0)

∧

(
(ρ2 = true) ∧ L̂3

)
∨

(
(ρ2 = false) ∧ L̂4

)
L̂1↔ L̂5 ∧ (ρ3 = −1)

L̂3↔ L̂5 ∧ (ρ3 = 1)

L̂4↔ L̂5 ∧ (ρ3 = 0)

L̂5↔ true

Figure 4. Running Example: LLVM IR Constraints

3.1 LLVM IR Constraints
The input is a loop-free LLVM IR code fragmentp, which is in
SSA form [10], and the output is the constraint p̂. Intuitively,
p̂ is a symbolic execution of p.

Code p consists of basic blocks, which form a (loop-free)
control flow graph (CFG) with a designated entry label lentry.
Each basic block starts with a unique label, followed by a
(possibly empty) sequence of phi instructions, then a se-
quence of operation instructions, and ends with a terminator
instruction, such as a branch or a function return.
There are 6 basic blocks in Fig. 2, labelled L0-L5, with

L0 being the entry label lentry. Basic block at L5 has three
predecessor blocks, labelled L1, L3, and L4.

Let l be a label in LLVM IR p. We use l̂ to denote the encod-
ing of the basic block that starts at the label l . The encoding
l̂ is a conjunction of the encodings of all the instructions in
l . Then, p̂ is simply �lentry.

Unbounded Superoptimization Onward!’17, October 25–27, 2017, Vancouver, Canada

∀j < n.
instr (j) = ADD→ state(y, j + 1)[rd (j)] = state(y, j))[rn (j)] + state(y, j)[rn (j)] ∧ PRES
instr (j) = MOV→ state(y, j + 1))[rd (j)] = state(y, j)[rn (j)] ∧ PRES
instr (j) = MOVGT→ ite(GT , state(y, j + 1)[rd (j)] = state(y, j)[rn (j)] ∧ PRES, state(y, j + 1) = state(y, j))

Figure 5. Running example: subset of ISA constraints in â

Fig. 4 shows the constraints for each label in Fig. 2. We
first explain the encoding of operation instructions, which
is based on [28, 50], and then demonstrate our encoding of
branch and phi instructions.

Operands Let op be an operand in an LLVM IR instruction,
ty be its type, andn be the number of bits ty occupies. We use
ρ(op, ty) to denote the logical bit-vector variable of width n
that represents op in SMT constraints.

In the example, x andv3 are of type i32, andv1 andv2 are
of type i1. To simplify the presentation, we use the following
shortcuts: ρx = ρ(x , i32), ρ1 = ρ(v1, i1), ρ2 = ρ(v2, i1),
ρ3 = ρ(v3, i32), where ρx and ρ3 are bit-vectors of length 32,
and ρ1 and ρ2 are bit-vectors of length 1.

Comparison Operations The single-bit integer type i1 is
used in LLVM IR to represent boolean values, such as results
of comparison operations icmp in our example (Line 3, Line 8).
Comparison operations on bit-vectors in SMT return a value
of sort Bool, which is distinct from the sort for bit-vectors of
width 1 in SMT. Our encoding of LLVM IR comparison oper-
ations to SMT takes care of the conversion, using if-then-else
construct ite. SMT bit-vector constants #b1 and #b0 of width
1 are used represent LLVM IR boolean constants true and
false, respectively.
For example, the constraint for the operation in Line 3

is ρ1 = ite(bvslt(ρx , nat2bv(32, 0)), #b1, #b0). To simplify the
presentation, we use <, 0, true, and false instead of bvslt,
nat2bv(32, 0), #b1, and #b0, respectively, when confusion is
unlikely. The above constraint for Line 3 can be written as
ρ1 = ite(ρx < 0, true, false). We present it as ρ1 = (ρx < 0)
for simplicity. Similarly, for Line 8, we get ρ2 = (ρx > 0).

Branch Instructions The conditional branch instruction
at the end of block L0 (Line 4) is encoded as(

(ρ1 = true) ∧ L̂1
)
∨

(
(ρ1 = false) ∧ L̂2

)
The constraints ρ1 = true and ρ1 = false come from the case
split on the value of the operandv1 of the conditional branch
instruction. Therefore, L̂0 is the conjunction of the encod-
ing of the icmp instruction from Line 3 and the conditional
branch instruction from Line 4.

Phi Instructions For each label li of a phi instruction in
block l , we create a constraint that expresses the correspond-
ing assignment. If there is more than one phi instruction
in l , we conjoin all assignments for label li . The resulting
constraint is denoted ⟨li , l⟩ and used to encode l̂i .

For example, from L1 alternative of the phi instruction at
the beginning of L5 block in Line 15, we get the constraint
ρ3 = −1. This constraint, denoted ⟨L1,L5⟩, is used in the
encoding of the unconditional branch instruction in L1:

L̂1↔ L̂5 ∧ (ρ3 = −1)

Similarly, for L3 and L4 we get:

L̂3↔ L̂5 ∧ ⟨L3,L5⟩ where ⟨L3,L5⟩ is ρ3 = 1
L̂4↔ L̂5 ∧ ⟨L4,L5⟩ where ⟨L4,L5⟩ is ρ3 = 0

3.2 ISA Constraints
To illustrate ISA constraints, Fig. 5 shows part of â cover-
ing ARM instructions relevant to our example: ADD, MOV,
MOVGT. The conditions are a combination of values of desig-
nated CPSR register bits. For example,GT def

= Z = 0∨N = V
where Z is state(y, j)[CPSR][30], N is state(y, j)[CPSR][31],
and V is state(y, j)[CPSR][28].

Templates We use templates to reduce the size of the ISA
encoding, similarly to the way templates are used in [19, 42].
A template t represents a subset of instructions from I using
uninterpreted functions:
• opcode: instr (j)
• immediate operand: cn(j) maps program location j to an
n-bit constant

• register operands: rd (j), rn(j), rm(j), and ro(j) map pro-
gram location j to register name for the destination d and
operands n,m, o

• branch destination brdest(j) denotes the target program
location for a branch instruction at program location j

For example, template instr (j) = ADD, rd (j) = 0, rn(j) = 1,
c8(j) = 5 represents the instruction ADD R0, R1, #5.

The semantics of MOV updates the destination register
and preserves all other components of the state. Preserve
constraints for templates involves an additional quantifier:

PRES
def
= ∀r .r , rd (j) → state(y, j + 1))[r] = state(y, j)[r]

3.3 Equivalence Constraints
In our example, there is one input x and the return value is
v3, stored in register R0. We get the following formula for ô.

rep(ρx) = state(y, 0)[R0] → rep(ρ3) = state(y,n)[R0]

3.4 From Model to Code
When SMT solver determines that its input formula is satis-
fiable, it returns a model that satisfies it. The model contains

Onward!’17, October 25–27, 2017, Vancouver, Canada Abhinav Jangda and Greta Yorsh

an assignment to all free variables and uninterpreted func-
tions. In our encoding, SMT model will assign n, instr , rd , rn ,
c4, c8, brdest when relevant. SMT Solver API provides a way
to inspect the model to get value of the above variables. To
convert SMT Model to ARM assembly, we inspect the model
m: for each j = 0 to n get template instruction identifier from
instr (j) inm, then get the appropriate operands for template
instruction from rd (j), rn(j), rm(j), ro(j), c8(j).

4 Preliminary Results
We report on experiments we performed to checkwhether Z3
can solve complex constraints that arise from our approach.
We used Hacker’s Delight [47] benchmarks, which have

been used in [19, 35] to evaluate their synthesis and super-
optimization method. We used Clang to generate LLVM IR
from the original C code of these benchmarks. Our prototype
takes LLVM IR as input and generates ARMv7-A assembly as
output. We used the standard cost function, i.e., the length of
the generated instruction sequence. Our prototype success-
fully generated optimal code for 17 of the 25 benchmarks
in that suite, in less than 30 minutes per benchmark, and
took up to 4 iterations of Algorithm 1 per benchmark. The
remaining 8 benchmarks require additional improvements
of the prototype.
We evaluated the performance of code generated by our

prototype in comparison to gcc -O3 on a Raspberry Pi 3 sys-
tem containing a 4 Core Broadcom BCM2837 ARMv8 Cortex
A53 1.2 GHz with 1 GB RAM. Each of the above bench-
marks are executed for 4 million iterations. Fig. 6 presents
the speedups achieved by our prototype over gcc.

We discuss the benchmarks for which our prototype gen-
erates code that is substantially different from the code gen-
erated by gcc. Fig. 7 shows the LLVM IR for p01, p13, and
p16. For these three benchmarks, both gcc and Stoke [35]
generate a naive translation of the input program.
For p01, our prototype generates a more efficient code

with an AND instruction, because using shifter operands in
a data processing instruction AND is faster than subtraction.

For p13, which works similarly to Massalin’s example [29]
to find the sign of the input argument, our prototype gener-
ates conditional move instructions.

For p16, which finds maximum of two inputs, gcc gener-
ates 4 instructions, whereas our prototype generates only 2
instructions: compare and conditional move.

5 Related Work
Production compilers are hand-tuned to generate efficient
code for target hardware, but do not guarantee optimality
even for straight-line code. Compilation time must be low for
the compiler to be usable in a standard way. Programmers
can control compilation time vs quality of generated code
using few predefined optimization levels (e.g., -O0 through
-O3 in gcc), and some additional combinations of compiler

options. Our approach is currently slower in terms of compi-
lation time. However, our approach can generate increasingly
better code as the time allotted for compilation increases,
with a finer control over this trade-off.

Massalin’s superoptimization [29] exhaustively enumer-
ates sequences of instructions of increasing length, testing
each for equivalence with the input code. There is no guar-
antee of correctness, but this approach is highly unlikely
to generate wrong code. The cost function is therefore the
length of the generated sequence. The approach can han-
dle only straight-line code as input and output, and did not
handle operations that involve memory.
Denali [21] can handle only straight-line code as input

and output, including memory operations, but supports elab-
orate cost functions that take into account parameters of
modern microarchitectures (such as multiple issue, memory
latency, etc). At a high level, our encoding is similar to theirs
in that they also generate a first order formula that expresses
the meaning of the source code and the semantics of the
entire ISA, including cost function. The difference is in the
approach taken to search for a model of this formula. De-
nali uses a specialized solver based on equality-preserving
transformations designed by an expert. Unlike Denali, our
approach is guide the search from within an SMT solver,
integrating with existing and future SMT solver technology.
This approach also makes it easier to reason about soundness,
in comparison to the proof of soundness of hand-written
transformation in Denali.
Stoke [35–38] is a modern superoptimizer based on sto-

chastic search. Markov Chain Monte Carlo sampler rapidly
explores the search space of all possible target programs to
find one that is an optimization of the input program. Stoke
handles control flow, including loops, using data-driven equiv-
alence checking algorithm [37] even in the presence of input
constraints [38]. Their algorithm conjectures a simulation
relation based on the observed data, and then uses this re-
lation to formulate an equivalence constraint that can be
discharged by an SMT solver. Our approach uses SMT solver
to (implicitly) derive an appropriate simulation relation for
loop-free fragments. We do not handle loops. Stoke was ex-
tended in [36] to Floating-Point. We have not experimented
with floating point or complex data-types yet.

GreenThumb [32] applies different search techniques in
parallel. One of the techniques introduced in [32] uses enu-
merative search to rapidly prune away invalid candidate
instruction sequences and selectively refine the abstraction
under which candidates are considered equivalent via an
incremental use of test cases. Counterexamples have pre-
viously been used for inductive synthesis of loop-free pro-
grams, e.g., [19, 20, 40, 42]. Our approach shifts the search
for optimal code into the SMT Solvers. It would be interest-
ing to explore the use of counter examples and abstraction
refinement within the solver for handling quantifiers that
arise from our approach.

Unbounded Superoptimization Onward!’17, October 25–27, 2017, Vancouver, Canada

*p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 *p13 p14 p15 *p16 p17
1

1.21

1 1 1 1 1 1 1 1 1 1 1

1.22

1 1

1.22

1

Sp
ee
du

p
Fa
ct
or

Figure 6. Speedups for benchmarks compiled by our technique over gcc. Benchmarks for which our technique discovered an
algorithmically distinct rewrite are annotated with a star.

p01 p13 p16
Input LLVM IR

def i32 p01 (i32 x):

o1 = sub i32 x, 1

res = and i32 x, o1

return res

def i32 p13 (i32 x):

o1 = ashr i32 x, 31

o2 = sub i32 0, x

o3 = lshr i32 o2, 31

res = or i32 o1, o3

return res

def i32 p16 (i32 x, i32 y):

o1 = xor i32 x, y

o2 = uge i32 x, y

o3 = sub i32 0, o2

o4 = and i32 o1, o2

res = xor i32 o3, y

return res

Output ARM assembly
AND R0, R0, R0, LSL #1 CMP R0, #0

MOVGT R0, #1

MOVLT R0, #-1

CMP R1, R0

MOVGT R0, R1

Figure 7. ARM code produced by our prototype for p01, p13, and p16 benchmark

Superoptimization boils down to proving a form of pro-
gram equivalence. In our setting, this is slightly non-standard
because the target program is unknown and its size is un-
bounded. Proving (standard) program equivalence even with-
out loops is not decidable in the presence of unbounded
memory. Therefore, there is source code for which a solver
will not find a solution, or will not improve on a solution
even when a better solution exists.
Differential program equivalence methods [22, 23] that

use SMT Solvers and can handle loops have been success-
fully applied in the setting of software security. [45] can
also handle certain loops. Instead of encoding Compiler’s
intermediate representation as a formula and using an exist-
ing solver, [45] constructs an intermediate representation of
all target instructions sequences that correctly implement
the source. Then, it analyzes the intermediate representa-
tion to find an optimal sequence. The construction works by
applying specifically designed equality preserving transfor-
mations. It has been applied to generate Java Bytecode. The
proof of correctness is non-trivial.

To avoid explicit loop unrolling duringmodel checking, [30]
uses SMT theory of Lists to express unbound program execu-
tions. This is similar in spirit to our encoding of ISA. Instead
of lists, we use a function instr that takes into account in-
struction size and alignment to handle some interesting costs,
e.g., does the loop body fit into the loop buffer, is the target of

a branch word aligned. Another concern is whether a solver
can handle a combination of lists and bit vectors (and arrays
for expressing memory).

Binary translation tools such as [9, 24, 46] typically decode
a binary to an intermediate representation, optimize it, and
generate the target binary. Binary translation is used for
example to improve the performance of existing emulation
tools, emulate multiple source-target architecture pairs, and
provide security guarantees. A static binary translator in [41]
is based on peephole superoptimizations. Our approach can
also be used in this context.

Recently, [39] demonstrated the effectiveness of constraint-
based software analysis, in particular due to the use ofMaxSAT.
Our approach, viewed as constraint-based software synthe-
sis, can similarly benefit from the emerging technology of
MaxSMT.

6 Conclusion and Future Work
We aim to change the way CPU-specific optimizations are
implemented in production compilers. The new compiler ar-
chitecture will generate code that takes full advantage of the
capabilities of new microarchitectures, without modifying
the compiler. It will provide greater flexibility for hardware
design and faster deployment of new hardware, as well as
better software performance and system reliability.

Onward!’17, October 25–27, 2017, Vancouver, Canada Abhinav Jangda and Greta Yorsh

We describe the core of the new approach to code genera-
tion and optimization, and present some encouraging results.
Unlike existing superoptimization and synthesis methods,
our approach shifts the entire search problem into the solver.
This provides a way to reuse reasoning and guide the solver
using domain specific information about the input program
and the target architecture. We believe that tighter integra-
tion with the solver is the right direction for this problem
domain.
Our encoding takes advantage of unbounded models of

first-order logic. However, quantifiers are used in a way that
takes the constraints outside of a decidable fragment. The
first challenge is to keep the constraints within first-order
logic, without fixing a-priori the length of the target instruc-
tion sequence. The second challenge is to reason about such
constraints automatically and efficiently. We described a way
to address the first challenge, and demonstrated that satisfi-
ability checking of these quantified formulas is feasible in
simple cases. The next steps are to evaluate the scalability in
comparison to existing tools and the effectiveness of existing
SMT solvers.

A preliminary prototype of our approach takes LLVM IR
as input and employs Z3 SMT solver to generate ARMv7-A
assembly. The prototype supports a small subset of LLVM IR
and ARMv7-A ISA. This prototype enables us to experiment
with a variety of cost functions and encodings. To speed up
code generation, we are evaluating modern SMT features
such as tactics, quantifiers, and constraint optimization. We
are also integrating the prototype with a (more) complete ISA
specification, including floating point and vector instructions.
We plan to support other architectures (ARMv8-A, x86_64,
and PowerPC) using existing formal ISA specifications.

Acknowledgements
We thank Eva Darulova and the anonymous reviewers for
their feedback on drafts of this paper.

References
[1] ARM. 2017. ISA specification for ARMv8-A. (2017). https://developer.

arm.com/products/architecture/a-profile/exploration-tools, released
in April 2017.

[2] Sorav Bansal and Alex Aiken. 2006. Automatic generation of peephole
superoptimizers. In Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 394–403.

[3] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011.
CVC4. In Int. Conf. on Computer Aided Verification (CAV). 171–177.
http://cvc4.cs.nyu.edu/web/.

[4] Clark W. Barrett, Yi Fang, Benjamin Goldberg, Ying Hu, Amir Pnueli,
and Lenore D. Zuck. 2005. TVOC: A Translation Validator for Opti-
mizing Compilers. In Int. Conf. on Computer Aided Verification (CAV).
291–295.

[5] Nikolaj Bjørner and Mikolás Janota. 2015. Playing with Quantified Sat-
isfaction (short paper). In Int. Conf. on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR). 15–27.

[6] Nikolaj Bjørner and Nina Narodytska. 2015. Maximum Satisfiabil-
ity Using Cores and Correction Sets. In Int. Joint Conf. on Artificial
Intelligence (IJCAI). 246–252.

[7] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. νZ -
An Optimizing SMT Solver. In Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). 194–199.

[8] Martin Brain, Tom Crick, Marina De Vos, and John P. Fitch. 2006.
TOAST: Applying Answer Set Programming to Superoptimisation. In
Int. Conf. on Logic Programming (ICLP). 270–284.

[9] Derek L. Bruening. 2004. Efficient, Transparent and Comprehensive
Runtime Code Manipulation. Ph.D. Dissertation.

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. K Zadeck. 1988. An Efficient Method of Computing Static Single
Assignment Form. Technical Report. Providence, RI, USA.

[11] Bjorner N. de Maura L. 2008. Z3: An efficient SMT solver. In Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS).

[12] Leonardo de Moura and Nikolaj Bjørner. 2007. Efficient E-Matching for
SMT Solvers. In Conference on Automated Deduction (CADE). 183–198.

[13] Leonardo Mendonça de Moura and Grant Olney Passmore. 2013. The
Strategy Challenge in SMT Solving. In Automated Reasoning and Math-
ematics - Essays in Memory of William W. McCune. 15–44.

[14] Shaked Flur, Kathryn E Gray, Christopher Pulte, Susmit Sarkar, Ali
Sezgin, Luc Maranget, Will Deacon, and Peter Sewell. 2016. Modelling
the ARMv8 architecture, operationally: concurrency and ISA. In ACM
Symp. on Principles of Programming Languages (POPL). 608–621.

[15] Anthony Fox. 2012. Directions in ISA Specification. Interactive Theo-
rem Proving.

[16] Andreas Fröhlich, Armin Biere, Christoph M Wintersteiger, and
Youssef Hamadi. 2015. Stochastic Local Search for Satisfiability Mod-
ulo Theories. In Proc. of Association for the Advancement of Artificial
Intelligence (AAAI). 1136–1143.

[17] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew
Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha
Mendelson, Ayal Zaks, Eric Courtois, François Bodin, Phil Barnard,
Elton Ashton, Edwin V. Bonilla, John Thomson, Christopher K. I.
Williams, and Michael F. P. O’Boyle. 2011. Milepost GCC: Machine
Learning Enabled Self-tuning Compiler. International Journal of Paral-
lel Programming 39, 3 (2011), 296–327.

[18] Shilpi Goel, Warren A. Hunt Jr., Matt Kaufmann, and Soumava Ghosh.
2014. Simulation and formal verification of x86 machine-code pro-
grams that make system calls. In Formal Methods in Computer-Aided
Design (FMCAD). 91–98.

[19] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. 2011. Synthesis of Loop-free Programs. In SIGPLAN Conf. on Prog.
Lang. Design and Impl. (PLDI). 62–73.

[20] Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv.
2010. A Simple Inductive Synthesis Methodology and Its Applications.
In Int. Conf. on Object Oriented Programming Systems Languages and
Applications (OOPSLA). 36–46.

[21] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-
directed Superoptimizer. In SIGPLAN Conf. on Prog. Lang. Design and
Impl. (PLDI). 304–314.

[22] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique
Rebêlo. 2012. SYMDIFF: A Language-Agnostic Semantic Diff Tool
for Imperative Programs. In Int. Conf. on Computer Aided Verification
(CAV). 712–717.

[23] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris
Hawblitzel. 2013. Differential assertion checking. In Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE). 345–355.

[24] Monica S. Lam (Ed.). 2000. SIGPLAN Conf. on Prog. Lang. Design and
Impl. (PLDI). ACM.

https://developer.arm.com/products/architecture/a-profile/exploration-tools
https://developer.arm.com/products/architecture/a-profile/exploration-tools
http://cvc4.cs.nyu.edu/web/

Unbounded Superoptimization Onward!’17, October 25–27, 2017, Vancouver, Canada

[25] Xavier Leroy. 2006. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. In ACM Symp. on
Principles of Programming Languages (POPL). ACM Press, 42–54. http:
//gallium.inria.fr/~xleroy/publi/compiler-certif.pdf

[26] Junghee Lim, Akash Lal, and Thomas W. Reps. 2011. Symbolic anal-
ysis via semantic reinterpretation. Int. Journal on Software Tools for
Technology Transfer (STTT) 13, 1 (2011), 61–87.

[27] Junghee Lim and ThomasW. Reps. 2013. TSL: A System for Generating
Abstract Interpreters and its Application to Machine-Code Analysis.
Trans. on Prog. Lang. and Syst. (TOPLAS) 35, 1, Article 4 (2013).

[28] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2015. Provably Correct Peephole Optimizations with Alive.
In SIGPLAN Conf. on Prog. Lang. Design and Impl. (PLDI). http:
//web.ist.utl.pt/nuno.lopes/pubs.php?id=alive-pldi15.

[29] Henry Massalin. 1987. Superoptimizer: A look at the smallest program.
In Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[30] Aleksandar Milicevic and Hillel Kugler. 2011. Model Checking Using
SMT and Theory of Lists. InNasa FormalMethods Symposium, Vol. 6617.
Springer Verlag, 282–297.

[31] George C. Necula. 2000. Translation validation for an optimizing
compiler. In PLDI. 83–94.

[32] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik,
and Dinakar Dhurjati. 2016. Scaling Up Superoptimization. In Int. Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 297–310.

[33] Alastair Reid. 2016. Trustworthy Specifications of ARM v8-A and v8-
M System Level Architecture. In Formal Methods in Computer-Aided
Design (FMCAD).

[34] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and
Clark W. Barrett. 2015. Counterexample-Guided Quantifier Instantia-
tion for Synthesis in SMT. In Int. Conf. on Computer Aided Verification
(CAV). 198–216.

[35] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Super-
optimization. In Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 305–316.

[36] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic Opti-
mization of Floating-point Programs with Tunable Precision. In SIG-
PLAN Conf. on Prog. Lang. Design and Impl. (PLDI). 53–64.

[37] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2013.
Data-driven Equivalence Checking. In Int. Conf. on Object Oriented
Programming Systems Languages and Applications (OOPSLA). 391–406.

[38] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken.
2015. Conditionally Correct Superoptimization. In Int. Conf. on Object

Oriented Programming Systems Languages and Applications (OOPSLA).
147–162.

[39] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik. 2017. Maximum
Satisfiability in Software Analysis: Applications and Techniques. In
Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. 68–94.

[40] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. 2006. Combinatorial Sketching for Finite Programs.
In Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 404–415.

[41] Alex Aiken Sorav Bansal. 2008. Binary Translation Using Peephole
Superoptimizers. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[42] Venkatesh Srinivasan and Thomas Reps. 2015. Synthesis of machine
code from semantics. In SIGPLAN Conf. on Prog. Lang. Design and Impl.
(PLDI). http://research.cs.wisc.edu/wpis/papers/pldi15.pdf.

[43] Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-Based Trans-
lation Validator for LLVM. In Int. Conf. on Computer Aided Verification
(CAV). 737–742.

[44] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J.
Fox, Scott Owens, and Michael Norrish. 2016. A new verified compiler
backend for CakeML. In Int. Conf. on Functional Programming (ICFP).
60–73.

[45] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009.
Equality Saturation: a New Approach to Optimization. In ACM Symp.
on Principles of Programming Languages (POPL). 264–276.

[46] David Ung and Cristina Cifuentes. 2000. Machine-adaptable Dynamic
Binary Translation. In Proceedings of the ACM SIGPLAN Workshop on
Dynamic and Adaptive Compilation and Optimization (DYNAMO ’00).
41–51.

[47] H. S. Warren. 2002. Hacker’s Delight. Addison-Wesley.
[48] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer.

2014. Approximations for Model Construction. In Int. Joint Conf. on
Automated Reasoning (IJCAR). 344–359.

[49] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer.
2016. Deciding Bit-Vector Formulas with mcSAT. In Theory and Appli-
cations of Satisfiability Testing (SAT). 249–266.

[50] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. 2012. Formalizing the LLVM intermediate representation
for verified program transformations. In ACM Symp. on Principles of
Programming Languages (POPL). 427–440.

http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://web.ist.utl.pt/nuno.lopes/pubs.php?id=alive-pldi15
http://web.ist.utl.pt/nuno.lopes/pubs.php?id=alive-pldi15
http://research.cs.wisc.edu/wpis/papers/pldi15.pdf

	Abstract
	1 Introduction
	1.1 Contributions of this Paper

	2 Overview
	2.1 Algorithm
	2.2 Our Encoding
	2.3 Comparison to Existing Methods

	3 Constraints
	3.1 LLVM IR Constraints
	3.2 ISA Constraints
	3.3 Equivalence Constraints
	3.4 From Model to Code

	4 Preliminary Results
	5 Related Work
	6 Conclusion and Future Work
	References

