14,073 research outputs found

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes

    Full text link
    We define a family of probability distributions for random count matrices with a potentially unbounded number of rows and columns. The three distributions we consider are derived from the gamma-Poisson, gamma-negative binomial, and beta-negative binomial processes. Because the models lead to closed-form Gibbs sampling update equations, they are natural candidates for nonparametric Bayesian priors over count matrices. A key aspect of our analysis is the recognition that, although the random count matrices within the family are defined by a row-wise construction, their columns can be shown to be i.i.d. This fact is used to derive explicit formulas for drawing all the columns at once. Moreover, by analyzing these matrices' combinatorial structure, we describe how to sequentially construct a column-i.i.d. random count matrix one row at a time, and derive the predictive distribution of a new row count vector with previously unseen features. We describe the similarities and differences between the three priors, and argue that the greater flexibility of the gamma- and beta- negative binomial processes, especially their ability to model over-dispersed, heavy-tailed count data, makes these well suited to a wide variety of real-world applications. As an example of our framework, we construct a naive-Bayes text classifier to categorize a count vector to one of several existing random count matrices of different categories. The classifier supports an unbounded number of features, and unlike most existing methods, it does not require a predefined finite vocabulary to be shared by all the categories, and needs neither feature selection nor parameter tuning. Both the gamma- and beta- negative binomial processes are shown to significantly outperform the gamma-Poisson process for document categorization, with comparable performance to other state-of-the-art supervised text classification algorithms.Comment: To appear in Journal of the American Statistical Association (Theory and Methods). 31 pages + 11 page supplement, 5 figure
    corecore