45,498 research outputs found

    On external presentations of infinite graphs

    Get PDF
    The vertices of a finite state system are usually a subset of the natural numbers. Most algorithms relative to these systems only use this fact to select vertices. For infinite state systems, however, the situation is different: in particular, for such systems having a finite description, each state of the system is a configuration of some machine. Then most algorithmic approaches rely on the structure of these configurations. Such characterisations are said internal. In order to apply algorithms detecting a structural property (like identifying connected components) one may have first to transform the system in order to fit the description needed for the algorithm. The problem of internal characterisation is that it hides structural properties, and each solution becomes ad hoc relatively to the form of the configurations. On the contrary, external characterisations avoid explicit naming of the vertices. Such characterisation are mostly defined via graph transformations. In this paper we present two kind of external characterisations: deterministic graph rewriting, which in turn characterise regular graphs, deterministic context-free languages, and rational graphs. Inverse substitution from a generator (like the complete binary tree) provides characterisation for prefix-recognizable graphs, the Caucal Hierarchy and rational graphs. We illustrate how these characterisation provide an efficient tool for the representation of infinite state systems

    A weighted pair graph representation for reconstructibility of Boolean control networks

    Full text link
    A new concept of weighted pair graphs (WPGs) is proposed to represent a new reconstructibility definition for Boolean control networks (BCNs), which is a generalization of the reconstructibility definition given in [Fornasini & Valcher, TAC2013, Def. 4]. Based on the WPG representation, an effective algorithm for determining the new reconstructibility notion for BCNs is designed with the help of the theories of finite automata and formal languages. We prove that a BCN is not reconstructible iff its WPG has a complete subgraph. Besides, we prove that a BCN is reconstructible in the sense of [Fornasini & Valcher, TAC2013, Def. 4] iff its WPG has no cycles, which is simpler to be checked than the condition in [Fornasini & Valcher, TAC2013, Thm. 4].Comment: 20 pages, 10 figures, accepted by SIAM Journal on Control and Optimizatio

    MSO definable string transductions and two-way finite state transducers

    Full text link
    String transductions that are definable in monadic second-order (mso) logic (without the use of parameters) are exactly those realized by deterministic two-way finite state transducers. Nondeterministic mso definable string transductions (i.e., those definable with the use of parameters) correspond to compositions of two nondeterministic two-way finite state transducers that have the finite visit property. Both families of mso definable string transductions are characterized in terms of Hennie machines, i.e., two-way finite state transducers with the finite visit property that are allowed to rewrite their input tape.Comment: 63 pages, LaTeX2e. Extended abstract presented at 26-th ICALP, 199

    Automata theory in nominal sets

    Full text link
    We study languages over infinite alphabets equipped with some structure that can be tested by recognizing automata. We develop a framework for studying such alphabets and the ensuing automata theory, where the key role is played by an automorphism group of the alphabet. In the process, we generalize nominal sets due to Gabbay and Pitts

    A B\"uchi-Elgot-Trakhtenbrot theorem for automata with MSO graph storage

    Full text link
    We introduce MSO graph storage types, and call a storage type MSO-expressible if it is isomorphic to some MSO graph storage type. An MSO graph storage type has MSO-definable sets of graphs as storage configurations and as storage transformations. We consider sequential automata with MSO graph storage and associate with each such automaton a string language (in the usual way) and a graph language; a graph is accepted by the automaton if it represents a correct sequence of storage configurations for a given input string. For each MSO graph storage type, we define an MSO logic which is a subset of the usual MSO logic on graphs. We prove a B\"uchi-Elgot-Trakhtenbrot theorem, both for the string case and the graph case. Moreover, we prove that (i) each MSO graph transduction can be used as storage transformation in an MSO graph storage type, (ii) every automatic storage type is MSO-expressible, and (iii) the pushdown operator on storage types preserves the property of MSO-expressibility. Thus, the iterated pushdown storage types are MSO-expressible
    • …
    corecore