503 research outputs found

    A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure

    Full text link
    In this paper we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential / capillary potential formulation of the two-phase flow system. After discretizing in time with diagonally implicit Runge-Kutta schemes the resulting systems of nonlinear algebraic equations are solved with Newton's method and the arising systems of linear equations are solved efficiently and in parallel with an algebraic multigrid method. The new scheme is investigated for various test problems from the literature and is also compared to a cell-centered finite volume scheme in terms of accuracy and time to solution. We find that the method is accurate, robust and efficient. In particular no post-processing of the DG velocity field is necessary in contrast to results reported by several authors for decoupled schemes. Moreover, the solver scales well in parallel and three-dimensional problems with up to nearly 100 million degrees of freedom per time step have been computed on 1000 processors

    Esquemas esencialmente no oscilatorios aplicados a la ecuación de Buckley-Leverett con término difusivo

    Get PDF
    The purpose of this work was to investigate the flow of two-phase fluids via the Buckley-Leverett equation, corresponding to three types of scenarios applied in oil extraction, including a diffusive term. For this, a weighted essentially non-oscillatory scheme, a Runge-Kutta method and a central finite difference were computationally implemented. In addition, a numerical study related to the precision order and stability was performed. The use of these methods made it possible to obtain numerical solutions without oscillations and without excessive numerical dissipation, sufficient to assist in the understanding of the mixing profiles of saturated water and petroleum fluids, inside pipelines filled with porous material, in addition to allowing the investigation of the impact of adding the diffusive term in the original equation.El propósito de este trabajo fue investigar el flujo de fluidos bifásicos a través de la ecuación de Buckley-Leverett, correspondiente a tres tipos de escenarios aplicados en la extracción de petróleo, incluyendo un término difusivo. Para ello se implementaron computacionalmente un esquema esencialmente no oscilatorio ponderado , un método de Runge-Kutta y un esquema de diferencias finitas centrado. Además, se realizó un estudio numérico relacionado con el orden de precisión y estabilidad. El uso de estos métodos permitió obtener soluciones numéricas sin oscilaciones y sin disipación numérica excesiva, suficientes para auxiliar en la comprensión de los perfiles de mezcla de agua saturada y fluidos derivados del petróleo, en el interior de tuberías llenas de material poroso, además de permitir la investigación del impacto de sumar el término difusivo en la ecuación original

    DISCONTINUOUS GALERKIN METHODS FOR COMPRESSIBLE MISCIBLE DISPLACEMENTS AND APPLICATIONS IN RESERVOIR SIMULATION

    Get PDF
    This dissertation contains research on discontinuous Galerkin (DG) methods applied to the system of compressible miscible displacements, which is widely adopted to model surfactant flooding in enhanced oil recovery (EOR) techniques. In most scenarios, DG methods can effectively simulate problems in miscible displacements.However, if the problem setting is complex, the oscillations in the numerical results can be detrimental, with severe overshoots leading to nonphysical numerical approximations. The first way to address this issue is to apply the bound-preservingtechnique. Therefore, we adopt a bound-preserving Discontinuous Galerkin methodwith a Second-order Implicit Pressure Explicit Concentration (SIPEC) time marchingmethod to compute the system of two-component compressible miscible displacement in our first work. The Implicit Pressure Explicit Concentration (IMPEC) method is one of the most prevalent time marching approaches used in reservoir simulation for solving coupled flow systems in porous media. The main idea of IMPEC is to treat the pressure equation implicitly and the concentration equations explicitly. However, this treatment results in a first-order accurate scheme. To improve the order of accuracy of the scheme, we propose a correction stage to compensate for the second-order accuracy in each time step, thus naming it the SIPEC method. The SIPEC method is a crucial innovation based on the traditional second-order strong-stability-preserving Runge-Kutta (SSP-RK2) method. However, the SIPEC method is limited to second-order accuracy and cannot efficiently simulate viscous fingering phenomena. High-order numerical methods are preferred to reduce numerical artifacts and mesh dependence. In our second work, we adopt the IMPEC method based on the implicit-explicit Runge-Kutta (IMEX-RK) Butcher tableau to achieve higher order temporal accuracy while also ensuring stability. The high-order discontinuous Galerkin method is employed to simulate the viscous fingering fluid instabilities in a coupled nonlinear system of compressible miscible displacements. Although the bound-preserving techniques can effectively yield physically relevant numerical approximations, their success depends heavily on theoretical analysis, which is not straightforward for high-order methods. Therefore, we introduce an oscillation-free damping term to effectively suppress the spurious oscillations near discontinuities in high-order DG methods. As indicated by the numerical experiments, the incorporation of the bound-preserving DG method with SIPEC time marching and high-order OFDG with IMPEC time marching provides satisfactory results for simulating fluid flow in reservoirs

    Das unstetige Galerkinverfahren für Strömungen mit freier Oberfläche und im Grundwasserbereich in geophysikalischen Anwendungen

    Get PDF
    Free surface flows and subsurface flows appear in a broad range of geophysical applications and in many environmental settings situations arise which even require the coupling of free surface and subsurface flows. Many of these application scenarios are characterized by large domain sizes and long simulation times. Hence, they need considerable amounts of computational work to achieve accurate solutions and the use of efficient algorithms and high performance computing resources to obtain results within a reasonable time frame is mandatory. Discontinuous Galerkin methods are a class of numerical methods for solving differential equations that share characteristics with methods from the finite volume and finite element frameworks. They feature high approximation orders, offer a large degree of flexibility, and are well-suited for parallel computing. This thesis consists of eight articles and an extended summary that describe the application of discontinuous Galerkin methods to mathematical models including free surface and subsurface flow scenarios with a strong focus on computational aspects. It covers discretization and implementation aspects, the parallelization of the method, and discrete stability analysis of the coupled model.Für viele geophysikalische Anwendungen spielen Strömungen mit freier Oberfläche und im Grundwasserbereich oder sogar die Kopplung dieser beiden eine zentrale Rolle. Oftmals charakteristisch für diese Anwendungsszenarien sind große Rechengebiete und lange Simulationszeiten. Folglich ist das Berechnen akkurater Lösungen mit beträchtlichem Rechenaufwand verbunden und der Einsatz effizienter Lösungsverfahren sowie von Techniken des Hochleistungsrechnens obligatorisch, um Ergebnisse innerhalb eines annehmbaren Zeitrahmens zu erhalten. Unstetige Galerkinverfahren stellen eine Gruppe numerischer Verfahren zum Lösen von Differentialgleichungen dar, und kombinieren Eigenschaften von Methoden der Finiten Volumen- und Finiten Elementeverfahren. Sie ermöglichen hohe Approximationsordnungen, bieten einen hohen Grad an Flexibilität und sind für paralleles Rechnen gut geeignet. Diese Dissertation besteht aus acht Artikeln und einer erweiterten Zusammenfassung, in diesen die Anwendung unstetiger Galerkinverfahren auf mathematische Modelle inklusive solcher für Strömungen mit freier Oberfläche und im Grundwasserbereich beschrieben wird. Die behandelten Themen umfassen Diskretisierungs- und Implementierungsaspekte, die Parallelisierung der Methode sowie eine diskrete Stabilitätsanalyse des gekoppelten Modells
    corecore