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Abstract

This dissertation contains research on discontinuous Galerkin (DG) methods applied

to the system of compressible miscible displacements, which is widely adopted to

model surfactant flooding in enhanced oil recovery (EOR) techniques. In most sce-

narios, DG methods can effectively simulate problems in miscible displacements.

However, if the problem setting is complex, the oscillations in the numerical re-

sults can be detrimental, with severe overshoots leading to nonphysical numerical

approximations. The first way to address this issue is to apply the bound-preserving

technique. Therefore, we adopt a bound-preserving Discontinuous Galerkin method

with a Second-order Implicit Pressure Explicit Concentration (SIPEC) time marching

method to compute the system of two-component compressible miscible displacement

in our first work. The Implicit Pressure Explicit Concentration (IMPEC) method is

one of the most prevalent time marching approaches used in reservoir simulation for

solving coupled flow systems in porous media. The main idea of IMPEC is to treat

the pressure equation implicitly and the concentration equations explicitly. How-

ever, this treatment results in a first-order accurate scheme. To improve the order of

accuracy of the scheme, we propose a correction stage to compensate for the second-

order accuracy in each time step, thus naming it the SIPEC method. The SIPEC

method is a crucial innovation based on the traditional second-order strong-stability-

preserving Runge-Kutta (SSP-RK2) method. However, the SIPEC method is limited

xvii



to second-order accuracy and cannot efficiently simulate viscous fingering phenomena.

High-order numerical methods are preferred to reduce numerical artifacts and mesh

dependence. In our second work, we adopt the IMPEC method based on the implicit-

explicit Runge-Kutta (IMEX-RK) Butcher tableau to achieve higher order temporal

accuracy while also ensuring stability. The high-order discontinuous Galerkin method

is employed to simulate the viscous fingering fluid instabilities in a coupled nonlin-

ear system of compressible miscible displacements. Although the bound-preserving

techniques can effectively yield physically relevant numerical approximations, their

success depends heavily on theoretical analysis, which is not straightforward for high-

order methods. Therefore, we introduce an oscillation-free damping term to effectively

suppress the spurious oscillations near discontinuities in high-order DG methods. As

indicated by the numerical experiments, the incorporation of the bound-preserving

DG method with SIPEC time marching and high-order OFDG with IMPEC time

marching provides satisfactory results for simulating fluid flow in reservoirs.
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Chapter 1

Introduction

Numerical modeling of miscible displacements within porous media is pivotal for

overcoming obstacles in oil recovery and mitigating environmental pollution. This

intricate issue encompasses a system of interlinked nonlinear partial differential equa-

tions, demanding precise and reliable simulations. The complexity of these equations

drives numerical analysts to persistently seek innovative solutions and methodologies

capable of adeptly navigating the nuances of this coupled system.

The foundational work on miscible displacements in porous media was established

through the pioneering application of mixed finite element methods, as introduced

in the seminal papers by Douglas et al. [1, 2]. This foundational research laid the

groundwork for further exploration into the compressible aspects of the problem,
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detailed in [3]. The development of new numerical strategies, such as the finite dif-

ference method [4], the splitting positive definite mixed element method [5], and the

H1-Galerkin mixed method [6], marked significant advancements in the field. In an

innovative approach, an Eulerian-Lagrangian localized adjoint method was integrated

with a mixed finite element method for solving the transport and pressure equations

respectively [7]. Kumar’s development of a mixed and discontinuous finite volume

method specifically for incompressible miscible displacement issues [8], along with

the introduction of a discrete duality finite volume (DDFV) scheme by Hillairet et al.

[9]—focusing on scheme convergence—highlighted the ongoing evolution of method-

ologies addressing these complex problems. Recent years have seen the Discontinuous

Galerkin (DG) methods gain prominence for their effectiveness in handling compress-

ible miscible displacements [10, 11, 12, 13, 14], with particular attention to managing

numerical approximation jumps and the non linearity of the convection term. The

breadth of research on DG methods for incompressible miscible displacements fur-

ther emphasizes their importance, with significant contributions made by Bartels et

al., Guo, Kumar, Riviere, Sun, and Wheeler among others [8, 15, 16, 17, 18, 19]. A

notable method in this domain is the interior penalty DG (IPDG) method, widely ap-

plied for convection-diffusion and elliptic equations [17], showcasing the diversification

and specialization within numerical techniques to tackle the challenges of modeling

miscible displacements in porous media.

While the methods previously discussed are generally effective for simulating miscible

2



displacements, challenges arise in complex scenarios, such as fluid flow around obsta-

cles, where numerical oscillations can detrimentally impact results. As highlighted in

[20], direct numerical simulations in such cases may produce severe overshoots, lead-

ing to unphysical numerical approximations. To mitigate these issues, the bound-

preserving technique emerges as a primary solution. Specifically, the second-order

bound-preserving technique for convection-diffusion equations has been investigated

[21], showing applicability to various DG methods, including IPDG, local DG, and

ultra-weak DG, as evidenced in [22, 23]. However, extending these techniques to

higher-order schemes presents significant challenges. Notably, the development of

the third-order MPP scheme for LDG methods on overlapping meshes and the DDG

method are discussed in [24, 25], alongside other high-order methods that involve

adjustments to numerical fluxes [26, 27, 28]. However, the previous studies men-

tioned above have given little attention to bound-preserving techniques for miscible

displacements. In many practical scenarios, physical parameters are closely linked to

the concentration c. If c falls outside the interval 0 to 1, we may not obtain the pa-

rameters used in the system, and in extreme cases, the numerical approximations may

become unstable. In [23], Guo and Yang first proposed bound-preserving DG methods

for the coupled system of two-component compressible miscible displacements. The

core idea is as follows: (1) Enforce c1+ c2 = 1 by selecting consistent numerical fluxes

in the schemes of the pressure and concentration equations. (2) Derive the scheme

3



of the second component concentration by subtracting the scheme of the concentra-

tion equation from that of the pressure equation. (3) Apply positivity-preserving

techniques to both c1 and c2 separately. The authors theoretically demonstrated

in [23] that this algorithm can produce physically relevant numerical cell averages.

A slope limiter can then be employed to ensure that the numerical approximations

stay within the desired bounds. Later, in [29], the authors expanded this idea to

multi-component miscible displacements, proposing high-order bound-preserving DG

methods on triangular meshes and showing that the slope limiter does not affect ac-

curacy. Bound-preserving finite difference methods were also explored in [30]. Several

other extensions following this approach can be found in [31, 32, 33].

Bound-preserving techniques, crucial for ensuring physical accuracy in numerical sim-

ulations of miscible displacements in porous media, often rely on strong-stability-

preserving Runge-Kutta (SSP-RK) time discretizations [34, 35, 36, 37]. Despite their

effectiveness, these techniques necessitate small time steps, significantly increasing

computational costs and limiting their applicability across various scenarios. The

necessity for small time steps primarily stems from the heterogeneity of the me-

dia, where areas of high permeability lead to substantial diffusion coefficients in the

pressure equation, as explored in [38] and accompanying studies. To navigate these

challenges, one strategy involves adopting implicit formulations for the pressure equa-

tion while maintaining an explicit approach for the concentration equation, given the

4



formidable complexity of fully implementing implicit schemes. Although fully im-

plicit schemes, as described in [39, 40], guarantee unconditional stability, they de-

mand extensive computational effort at each time step due to the system’s thorough

coupling. In response, the IMplicit Pressure Explicit Concentration (IMPEC) scheme

[41, 42, 43, 44, 45] has emerged as a favored alternative for modeling compressible flows

in porous media. This approach, which processes the pressure equation implicitly and

the concentration equation explicitly, simplifies system configuration, enhances exe-

cution efficiency, and reduces memory requirements per time step by decoupling the

equations and solving them sequentially. Originally introduced by Sheldon et al. [46]

and further developed by Stone et al. [47], the IMPEC method has evolved to include

a fully mass-conservative iterative version for multi-component compressible flow [48].

Despite these advancements, IMPEC methods generally achieve only first-order time

accuracy. Developing a second-order IMPEC time method that remains compatible

with bound-preserving techniques presents a significant technical challenge, under-

scoring the ongoing need for innovative solutions in the numerical modeling of porous

media flows

In Chapter 2, we construct a Second-order IMplicit Pressure Explicit Concentration

(SIPEC) time method with the bound-preserving technique for Darcy compressible

miscible displacements. The method consists of three steps: (1) Using the SSP-RK2

method, the pressure equation is treated implicitly and the concentration equation

is treated explicitly to obtain a first-order time scheme. (2) The local truncation

5



error of the first-order scheme is derived. (3) In accordance with the method outlined

in [49], a corrective stage is introduced to offset the second-order accuracy of the

aforementioned scheme and simultaneously uphold the bound-preserving nature of

the numerical cell averages. In Section 2.5, some numerical experiments and results

will be shown to demonstrate the accuracy and capability of the bound-preserving

IPDG methods coupled with the SIPEC time discretization.

The SIPEC method, as detailed in [50, 51], achieves second-order accuracy but falls

short in efficiently simulating complex phenomena such as viscous fingering. Com-

parative analyses in Section 3.5 between second-order and higher-order schemes un-

derscore the importance of advanced methodologies. While bound-preserving tech-

niques are instrumental in generating physically plausible numerical approximations,

their implementation, particularly for high-order methods, demands rigorous theo-

retical underpinning a challenge not readily addressed by the strategies proposed

in [50, 51] for extending to third-order accuracy. To mitigate spurious oscillations

near discontinuities in high-order Discontinuous Galerkin (DG) methods, the devel-

opment of various limiters, including the minmod -type Total Variation Diminishing

(TVD) limiter, the Total Variation Bound (TVB) limiter, and the Weighted Essen-

tially Non-Oscillatory (WENO) limiter, has been pivotal, as discussed in [52, 53, 54].

These limiters fine-tune the numerical solution post-calculation by identifying and

processing troubled cells, although their effectiveness can vary with the specific prob-

lem at hand, potentially affecting the desired attributes of the original schemes. An
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alternative strategy involves embedding artificial terms into the weak formulation to

achieve properties like entropy stability or shock capturing capabilities, as explored

in [55]. However, the success of artificial diffusion methods hinges on the precise ad-

justment of parameters, which, if improperly calibrated, can either excessively smear

shocks or fail to adequately dampen spurious oscillations. A novel approach intro-

duced by Liu [56] offers a different solution to addressing numerical oscillations in DG

methods by incorporating a damping term into the standard DG framework. This

method employs a uniform selection of damping coefficients to ensure minimal impact

in smooth solution regions while effectively dampening oscillations near discontinu-

ities, thus obviating the need for problem-specific parameter tuning and simplifying

implementation. In light of these developments, the Optimized Flux Discontinuous

Galerkin (OFDG) methods, as demonstrated in [57], have been applied successfully

to multi-component chemically reacting flows. These methods not only conserve

mass and adhere to bound-preserving principles but also outperform traditional DG

schemes with TVD limiters in numerical experiments. This advancement motivates

the exploration of OFDG methods as a viable solution for addressing oscillations and

developing IMPEC methods tailored for miscible displacement scenarios.

In Chapter 3, we introduce an advanced conservative high-order interior penalty Dis-

continuous Galerkin (DG) scheme, augmented with an oscillation-free damping term

7



(OFDG), designed for compressible miscible displacements. This scheme incorpo-

rates a high-order Implicit-Explicit (IMEX) Runge-Kutta [58] approach for time dis-

cretization. The core advantage of this high-order IMPEC method lies in its ability to

combine high-order temporal accuracy with the utilization of larger time-step sizes,

significantly reducing computational demands. We validate the effectiveness, robust-

ness, and accuracy of this fully integrated DG method, featuring an oscillation-free

damping term, through simulations conducted on a rectangular mesh. Specifically,

in Section 3.5, we showcase successful simulations of the viscous fingering instabil-

ity phenomenon, employing high-order oscillation-free DG schemes to highlight their

capability in capturing complex flow dynamics accurately.
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Chapter 2

Bound-preserving DG methods

with second-order implicit pressure

explicit concentration time

marching for compressible miscible

displacements in porous media

In this paper, we construct bound-preserving interior penalty discontinuous Galerkin

(IPDG) methods with a second-order implicit pressure explicit concentration (SIPEC)

9



time marching for the coupled system of two-component compressible miscible dis-

placements. The SIPEC method is a crucial innovation based on the traditional

second-order strong-stability-preserving Runge-Kutta (SSP-RK2) method. The main

idea is to treat the pressure equation implicitly and the concentration equation explic-

itly. However, this treatment would result in a first-order accurate scheme. Therefore,

in all previous works, only the combination of forward and backward Euler time in-

tegration was considered. In this paper, we propose a correction stage to compensate

for the second-order accuracy in each time step. There are two main difficulties

in constructing a second-order scheme. Firstly, in the concentration equation, cor-

rection of the diffusion term will cause anti-diffusion, leading to malfunction of the

bound-preserving technique. We can deal with the velocity in the diffusion term ex-

plicitly to avoid correction of the diffusion term. Secondly, we need to ensure that the

bound-preserving technique for the convection and source terms can be applied when

the correction stage has been established. In fact, in the correction stage, the new

approximation to the concentration can be chosen as the numerical solution in the

previous stage, so the numerical cell averages are positivity-preserving. Moreover, we

use the same correction technique for the pressure, so that the consistent flux pairs

would guarantee the preservation of the upper bound 1 of the concentration. Numer-

ical experiments will be given to demonstrate that the proposed scheme can reduce

the computational cost significantly compared with explicit schemes if the diffusion

coefficient D is small in the concentration equation. Moreover, the proposed method

10



also yields much larger cfl number compared with first-order implicit pressure explicit

concentration schemes. Moreover, the effectiveness of the bound-preserving technique

will also be presented.

Keywords: Compressible miscible displacements; Interior penalty discontinuous Galerkin

method; Second-order implicit pressure explicit concentration method; Bound-preserving;

Contaminant transportation

2.1 Introduction

Numerical simulation of miscible displacements in porous media is of great significance

in oil recovery and contaminant transportation problems. The miscible displacements

are usually described by a coupled system of nonlinear partial differential equations.

There is a great demand for the accuracy and efficiency of the numerical methods for

the coupled system. In this paper, we consider the fluid mixture with two components,

and the classical equations governing the compressible miscible displacements on the

computational domain Ω = [0, 2π]× [0, 2π] for all (x, y) ∈ Ω, 0 < t ≤ T are as follows:

d(c)
∂p

∂t
+∇ · u = d(c)

∂p

∂t
−∇ ·

(
κ(x, y)

µ(c)
∇p

)
= q, (2.1)

ϕ
∂c

∂t
+ b(c)

∂p

∂t
+ u · ∇c−∇ · (D∇c) = (c̃− c)q. (2.2)
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Here the unknown variables p, u and c are the pressure of the fluid mixture, the

Darcy velocity of the mixture, and the volumetric concentration of interested species,

respectively. ϕ and κ are the porosity and permeability of the rock, respectively. µ

is concentration-dependent viscosity. q is the external volumetric flow rate, and c̃ is

the concentration of the fluid in the external flow, which must be specified at points

where injection (q > 0) takes place, and is assumed to be equal to c at production

points (q < 0). The diffusion coefficient D is symmetric and arises from two aspects:

molecular diffusion, which is rather small for field-scale problems, and dispersion,

which is velocity-dependent. It takes the form

D (u) = ϕ(x, y)(dmolI+ dlong |u|E+ dtran |u|E⊥), (2.3)

where E is a 2× 2 matrix, representing the orthogonal projection along the velocity

vector given as

(E (u))ij =
uiuj

|u|2
, 1 ≤ i, j ≤ 2, u = (u1, u2)

T ,

and E⊥ = I−E is the orthogonal complement. The diffusion coefficient dlong measures

the dispersion in the direction of the flow and dtran shows that transverse to the flow.

To ensure the stability of the scheme, D is assumed to be strictly positive definite

in almost all the previous works. In this paper, D is assumed to be positive semi-

definite. Therefore, we have D11 ≥ 0, D22 ≥ 0, and D12 = D21. Moreover, the
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pressure is uniquely determined up to a constant, thus we assume
∫
Ω
pdxdy = 0 to

ensure the uniqueness. However, this assumption is not essential. Other coefficients

can be stated as follows:

c = c1 = 1− c2, d(c) = ϕ

2∑
j=1

zjcj, b(c) = ϕc1

{
z1 −

2∑
j=1

zjcj

}
,

where cj and zj are the concentration and the compressibility factor of the jth com-

ponent of the fluid mixture, respectively. In this paper, we consider homogeneous

Neumann boundary conditions

u · n = 0, (D∇c− cu) · n = 0, (2.4)

where n is the unit outer normal of the boundary ∂Ω. Moreover, the initial solutions

are given as

c(x, y, 0) = c0(x, y), p(x, y, 0) = p0(x, y), (x, y) ∈ Ω.

In the previous works, Douglas et al. [1, 2] first proposed the mixed finite element

method for miscible displacements in porous media, and carried out the follow-up

study in [3]. Later, in [59], Chou and Li gave the optimal order estimates in L2-norm

and almost optimal order estimates in L∞-norm. Subsequently, various numerical

methods were introduced to obtain better approximations, such as the finite difference
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method [4, 60, 61], splitting positive definite mixed element method [5], characteristic

finite element method [62] and H1-Galerkin mixed method [63]. Besides the above,

Wang et al. studied an accurate and efficient simulator for problems with wells in

[6]. Later, the authors introduced an Eulerian-Lagrangian localized adjoint method

to solve the transport equation for concentration, and a mixed finite element method

to solve the pressure equation [7]. Moreover, Kumar [8] developed a mixed and dis-

continuous finite volume method for incompressible miscible displacement problems.

In [9], a DDFV scheme was proposed to solve the problem, where the convergence of

the scheme was studied.

Recently, the discontinuous Galerkin (DG) methods have been widely used to solve

the compressible miscible displacements [10, 11, 12, 13, 64, 65] and incompressible

miscible displacements [15, 16, 18, 19, 66, 67] in porous media. The methods, first

introduced in [68], employ finite element spaces containing elementwise discontinuous

functions and develop special numerical techniques to control the jumps of numerical

approximations as well as the nonlinearity of the convection term. Therefore, DG

methods have the advantages of good stability, high order accuracy, flexibility on h-p

adaptivity and on complex geometry, and gained great popularity. A commonly used

DG method for convection-diffusion equations and elliptic equations is the interior

penalty DG (IPDG) method [17].

As another important aspect of the DG methods, the bound-preserving technique has
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been widely studied. In [69], Zhang and Shu first constructed the genuinely maximum-

principle-satisfying high order DG and finite volume methods. Subsequently, this

bound-preserving technique has been successfully extended to many problems, such

as compressible Euler equations [70, 71], hyperbolic equations involving δ-singularities

[72, 73, 74], relativistic hydrodynamics [75] and shallow water equations [76], etc. If

the exact solution has only one lower bound 0, then the technique is also called

positivity-preserving technique. For convection-diffusion equations, the second-order

bound-preserving technique has been studied in [77]. The technique works for IPDG,

local DG and ultra-weak DG methods, see [22, 23] for some applications. However,

the extension to high-order schemes seems to be not straightforward. The third-order

MPP scheme based on LDG methods on overlapping meshes [78] and DDG method

[25] were discussed. Other high-order methods were also investigated in [28, 79, 80]

based on the modification of numerical fluxes. However, the previous works above

paid little attention to the bound-preserving techniques for miscible displacements.

In many actual problems, physical parameters are closely related to the concentra-

tion c. If c is placed out of the interval 0 to 1, we might not obtain the parameters

used in the system, and the numerical approximations may blow up in some extreme

cases [23]. We will demonstrate this point in numerical experiments in Section 2.5.

In [23], two authors of this paper first proposed the bound-preserving DG methods

for the coupled system of the two-component compressible miscible displacements.
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The basic idea is as follows. (1) Enforce c1 + c2 = 1 by choosing consistent numer-

ical fluxes (see Definition 2.2.1) in the schemes of the pressure and concentration

equations. (2) Subtract the scheme of the concentration equation from that of the

pressure equation to obtain that of the second component concentration. (3) Ap-

ply the positivity-preserving techniques to both c1 and c2, respectively. In [23], the

authors theoretically proved that the above algorithm can yield physically relevant

numerical cell averages. Then a slope limiter can be applied to make the numerical

approximations to be within the desired bounds. Later, in [29], Chuenjarern et al.

extended the idea to multi-component miscible displacements, proposed high-order

bound-preserving DG methods on triangular meshes, and proved that the slope lim-

iter does not affect the accuracy. The bound-preserving finite difference methods were

also discussed in [30]. Some other extensions following the same idea can be found

in [31, 32, 33]. Unfortunately, the above bound-preserving techniques are based on

strong-stability-preserving Runge-Kutta (SSP-RK) time discretization [34, 35, 36, 37],

which lead to small time step sizes and large computational cost. Therefore, those

works can hardly be applied in practice. The main issue for the small time step size

is due to the heterogeneity of the media, see e.g. [38] and the references therein. In

fact, in some part of the media, the permeability would be extremely high, leading

to large diffusion coefficients in the pressure equation. Therefore, a straightforward

alternative is to consider implicit forms of the pressure equation. Moreover, the con-

centration equation should be solved explicitly as the fully implicit scheme would
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be extremely difficult to implement. However, this implicit pressure explicit concen-

tration (IMPEC) treatment would degenerate any high-order time integration to a

first-order one [81], hence all the previous works mainly consider the combination of

forward and backward Euler methods, see e.g. [45].

In this paper, we will use IPDG method for spatial discretization, develop a second-

order implicit pressure explicit concentration (SIPEC) time discretization for com-

pressible miscible displacements in porous media, and then apply bound-preserving

techniques to obtain physically relevant numerical approximations. To be more pre-

cise, the IPDG method in this paper is in a symmetric form, i.e. symmetric interior

penalty Galerkin method [82]. Furthermore, the SIPEC method is a crucial innova-

tion in this paper, which is based on the traditional SSP-RK2 method. The basic

idea can be divided into the following three steps. (1) Based on the framework of

the SSP-RK2 method, we treat the pressure equation implicitly and the concentra-

tion equation explicitly so as to obtain a scheme that is only first-order accurate in

time. (2) By comparing the above scheme with the traditional SSP-RK2 scheme, the

truncation error between them is obtained. (3) Following [81], a correction stage is

introduced to compensate for the second-order accuracy of the above scheme, main-

taining the bound-preserving property of the numerical cell averages in the mean-

time. The bound-preserving technique for the fully-explicit schemes has been given

in [23, 29], hence we only need to focus on the technique in the correction stage.

However, we would like to emphasize that the time integration used in this paper is
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totally different from the fully explicit methods used in [23, 29]. There are two main

difficulties in constructing the correction stage. Firstly, it is very difficult to correct

the diffusion term in the concentration equation, which will cause anti-diffusion and

the bound-preserving techniques fail to work. Secondly, we need to ensure that the

bound-preserving technique can be applied to the convection and source terms when

the correction stage has been established. In fact, in the concentration equation, we

treat the velocity and pressure in the convection and source terms implicitly while

those in the diffusion term explicitly so as to avoid the correction of the diffusion

term. We can theoretically prove that such correction will yield a second-order ac-

curacy in time. Moreover, in the correction stage, the new approximation to the

concentration can be chosen as the numerical solution in the previous stage, so the

numerical cell averages are positive-preserving. Besides, the correction for pressure

is designed in a similar way, which can preserve the upper bound of the cell averages

of the concentration by using consistent numerical fluxes in the correction stage. In

numerical experiments, we compare the SIPEC method with the SSP-RK2 method

used in [23, 29]. The time accuracy of both methods is second-order. Moreover, the

results show that the CPU time by the SIPEC method is significantly less than that

by the SSP-RK2 method. In addition, we also compare the SIPEC method with the

IMPEC method, where backward and forward Euler methods are used to discretize

the time derivatives of pressure and concentration equations, respectively. The results

show that there is no significant difference between the two methods when the time
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step is small. However, we can observe strong oscillations if the time step is large

in the IMPEC method, while the oscillations disappear for SIPEC method. This is

because the concentration equation is discretized by the second-order IPDG method

coupled with the first-order forward Euler time-marching scheme in IMPEC schemes,

leading to instability if ∆t ∼ ∆x. Since our method is based on the SSP-RK2 time

integration, for stability, we only consider second-order spatial discretization. The

case with high-order spatial discretization will be discussed in the future. Finally, we

point out that if the diffusion coefficient D is small, the SIPEC method has a sig-

nificant advantage compared with the traditional SSP-RK2 scheme in computational

cost. However, if D is large, the advantage may not be significant.

The paper is organized as follows. In Section 2.2, we introduce the notations to be

used throughout the paper, then construct the IPDG scheme for compressible miscible

displacements. In Section 2.3, the SIPEC method is derived. The bound-preserving

techniques will be given in Section 2.4. In Section 2.5, some numerical experiments

and results will be shown to demonstrate the accuracy and capability of the bound-

preserving IPDG methods coupled with the SIPEC time discretization. We will end

in Section 2.6 with concluding remarks.
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2.2 The semi-discrete IPDG scheme

In this section, we will introduce the notations to be used throughout the paper, then

construct IPDG scheme for compressible miscible displacement problem (2.1)-(2.2),

and demonstrate some key points.

2.2.1 Basic notations

We first introduce the notation used throughout the paper. We consider rectangular

meshes only, and the case for triangular meshes can be obtained following [29] and

the correction stage introduced in this paper. Let 0 = x 1
2
< · · · < xNx+

1
2
= 2π and

0 = y 1
2
< · · · < yNy+

1
2
= 2π be the coordinates of the grid points in the x and y

directions, respectively. Define Ii = (xi− 1
2
, xi+ 1

2
) and Jj = (yj− 1

2
, yj+ 1

2
). Let Kij =

Ii × Jj, (i = 1, . . . , Nx, j = 1, . . . , Ny) be the i, j-th cell and denote Ωh = ∪
i,j
Kij as a

partition of Ω. Unless otherwise stated, we always useK to denote the cells. The mesh

sizes in the x and y directions are given as ∆xi = xi+ 1
2
−xi− 1

2
and ∆yj = yj+ 1

2
−yj− 1

2
,

respectively. For simplicity, we assume uniform meshes and denote ∆x = ∆xi and

∆y = ∆yj. However, this assumption is not essential. Moreover, we denote Γ to be

the set of all element interfaces, and Γ0 = Γ\∂Ω. For any e ∈ Γ, denote |e| to be

the length of e. We choose β = (1, 1)T to be a fixed vector that is not parallel to
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any normal of the cell interfaces, and define ne as the unit normal of e ∈ Γ0 such

that β · ne > 0. Furthermore, we denote ∂Ω+ = {e ∈ ∂Ω : β · n > 0}, where n is

the unit outer normal of ∂Ω, and ∂Ω− = ∂Ω\∂Ω+. In this paper, we will construct a

second-order IPDG scheme, and the finite element space is chosen as

Wh = {z : z|K ∈ Q1(K), ∀K ∈ Ωh},

where Q1(K) denotes the space of tensor product of linear polynomials in K. More-

over, let e ∈ Γ0 be an interior edge shared by two elementsKℓ andKr, where β ·nℓ > 0

and β · nr < 0 with nℓ and nr being the unit outer normal of Kℓ and Kr. For any

z ∈ Wh, z
− and z+ represent the values taken from Kℓ and Kr, respectively. Further-

more, we use [z] = z+ − z− and {z} = 1
2
(z+ + z−) as the jump and average of z at

the cell interfaces, respectively. For simplicity, for any e ∈ ∂Ω−, we define z−|e = 0.

Similarly, for any e ∈ ∂Ω+, we define z+|e = 0.
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2.2.2 The semi-discrete IPDG scheme

To construct the IPDG scheme, the coupled system (2.1)-(2.2) is rewritten into the

following conservative form:

d(c)
∂p

∂t
+∇ · u = q, (2.1)

a(c)u = −∇p, (2.2)

ϕ
∂c

∂t
+∇ · (uc)−∇ · (D∇c) = c̃q − ϕcz1pt, (2.3)

where a(c) = µ(c)
κ(x,y)

.

Next, we would like to state the following key points, which can be applied to the

bound-preserving technique [23].

1. Approximate r = ϕc directly instead of c. Due to the existence of ϕ in (2.3), we

cannot obtain the cell averages of c by simply taking the test function to be 1.

2. Treat pt in (2.3) as a source to apply the positivity-preserving technique.

3. Choose a consistent flux pair (see Definition 2.2.1) for (2.1) and (2.3) to ensure

r̄ ≤ ϕ̄, where r̄ and ϕ̄ are the cell averages of r and ϕ, respectively.
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4. Take the L2-projection of ϕ into Wh, denoted as Φ, which is the approximation

of the porosity.

5. Construct a limiter to maintain the cell average r̄ and modify the numerical

approximations of r such that 0 ≤ r ≤ Φ, which further yields c = P1

(
r
Φ

)
∈

[0, 1], where P1(u) |K is the interpolation of u at the four vertices of cell K.

Unless otherwise stated, we use p, u, c as the numerical approximations from now

on. The IPDG scheme is to find (p, r, u) ∈ Wh ×Wh ×Wh, such that the following

variation forms hold for any (ξ, ζ, η) ∈ Wh ×Wh ×Wh,

(d̃(r)pt, ξ) = P(u, ξ) + (q, ξ), (2.4)

(a(c)u,η) = K(p,η), (2.5)

(rt, ζ) = Lc(u, c, ζ) + Ld(u, c, ζ) + (c̃q − rz1pt, ζ), (2.6)

where c = P1

(
r
Φ

)
, d̃(r) = z1r + z2(Φ− r), (u, v) =

∫
Ω
uvdxdy, and

P(u, ξ) = (u,∇ξ) +
∑
e∈Γ0

∫
e

û · ne[ξ]ds, (2.7)

K(p,η) = (p,∇ · η) +
∑
e∈Γ

∫
e

p̂[η · ne]ds, (2.8)
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Lc(u, c, ζ) = (uc,∇ζ) +
∑
e∈Γ0

∫
e

ûc · ne[ζ]ds, (2.9)

Ld(u, c, ζ) = −(D(u)∇c,∇ζ)

−
∑
e∈Γ0

∫
e

({D(u)∇c · ne}[ζ]) ds

−
∑
e∈Γ0

∫
e

(
{D(u)∇ζ · ne}[c] +

α̃

|e|
[c][ζ]

)
ds. (2.10)

In (2.7)-(2.9), p̂, û, and ûc are the numerical fluxes. We use alternating fluxes for

the diffusion terms, and for any e ∈ Γ0

p̂|e = p−|e, û|e = u+|e, (2.11)

and on ∂Ω, we take

p̂|e = p−|e, ∀e ∈ ∂Ω+, p̂|e = p+|e, ∀e ∈ ∂Ω−. (2.12)

For the convection term, for any e ∈ Γ0, we use

ûc = u+c+ − α[c]ne, (2.13)

where α and α̃ are two positive constants chosen by the bound-preserving technique.
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Before we finish this subsection, we would like to introduce the definition of consistent

fluxes, which will be used in the bound-preserving technique.

Definition 2.2.1 ûc and û are said to be consistent if ûc = û by taking c = 1 in Ω.

Obviously, the numerical flux ûc in (2.13) is consistent with û in (2.11), which is

required by the bound-preserving technique.

Remark 2.2.1 There are plenty of consistent fluxes that can be used following the

procedures described in Section 2.4. The proofs are basically the same with a few

minor changes, so we just list some of them below without further details. We use

them in different numerical examples in Section 2.5.

• p̂ = p+, û = u−, ûc = u−c− − α[c]ne.

• p̂ = 1
2
(p+ + p−), û = 1

2
(u+ + u−), ûc = 1

2
(u+c+ + u−c−)− α[c]ne.

2.3 The SIPEC time integration

In this section, we will develop the SIPEC scheme, which is derived from the SSP-

RK2 method with pressure equation solving implicitly and a correction stage. More
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generally, we solve the following ordinary differential equations:

pt = f(p, r, q), (2.1)

rt = g1(p, r, b) + g2(p, r), (2.2)

where dependent variables are p and r. q and b are the source terms of the above two

equations, respectively. f(p, r, q) corresponds to the right-hand side of the pressure

equation. g1(p, r, b) stands for the convection and the source terms in the concentra-

tion equation while g2(p, r) represents the diffusion term.

Let {tn = n∆t}Mn=0 be a uniform partition of the time interval [0, T ] with time step

size ∆t. We use on and o(tn) (o = p or r) as the numerical solution and exact solution

for (2.1)-(2.2) at time tn, respectively. For n = 0, p0 and r0 are L2-projections of p(t0)

and r(t0), respectively. When n ≥ 0, supposing the numerical solutions pn, rn have

been given, we discuss how to find pn+1, rn+1 by the SIPEC method. First, we would

obtain p(1), r(1), p(2), r(2), p(3), r(3) by the following scheme:

p(1) = pn +∆tf(p(1), rn, qn), (2.3)

r(1) = rn +∆t
(
g1(p

(1), rn, bn) + g2(p
n, rn)

)
, (2.4)
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p(2) = p(1) +∆tf(p(2), r(1), qn+1), (2.5)

r(2) = r(1) +∆t
(
g1(p

(2), r(1), bn+1) + g2(p
(1), r(1))

)
, (2.6)

p(3) =
1

2
pn +

1

2
p(2), (2.7)

r(3) =
1

2
rn +

1

2
r(2), (2.8)

where qn+1 = q(tn+1) and bn+1 = b(tn+1). Notice that (2.1) is solved implicitly while

(2.2) is solved explicitly in the above scheme. The scheme is only first-order accurate

if we use p(3) and r(3) as the numerical approximations at tn+1. In order to obtain a

second-order scheme, we introduce the following correction stage:

pcor(1) = pn +∆tf(pcor(1), r(3), qn+1), (2.9)

pcor(2) = p(1) +∆tf(pcor(2), r(3), qn+1), (2.10)

pn+1 = p(3) −∆t
(
f(pcor(2), r(3), qn+1)− f(pcor(1), r(3), qn+1)

)
= p(3) + p(1) − pcor(2) + pcor(1) − pn, (2.11)

rn+1 = r(3) −∆t
(
g1(p

cor(2), r(3), bn+1)− g1(p
cor(1), r(3), bn+1)

)
. (2.12)

We call (2.3)-(2.12) the SIPEC scheme. Now, we can state the following theorem.
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Theorem 2.3.1 The SIPEC time integration (2.3)-(2.8) and (2.9)-(2.12) is second-

order accurate in time.

Proof Follow the local truncation error, we assume pn = p(tn) and rn = r(tn) are

exact solutions at time level n. since (2.3)-(2.8) are derived from the SSP-RK2 method

[35], and the standard SSP-RK2 schemes are as follows:

p̃(1) = pn +∆tf(pn, rn, qn), (2.13)

r̃(1) = rn +∆t (g1(p
n, rn, bn) + g2(p

n, rn)) , (2.14)

p̃(2) = p̃(1) +∆tf(p̃(1), r̃(1), qn+1), (2.15)

r̃(2) = r̃(1) +∆t
(
g1(p̃

(1), r̃(1), bn+1) + g2(p̃
(1), r̃(1))

)
, (2.16)

p̃n+1 =
1

2
pn +

1

2
p̃(2), (2.17)

r̃n+1 =
1

2
rn +

1

2
r̃(2). (2.18)

Obviously, the above schemes are evaluated explicitly, and after one step we have

p̃n+1 = p(tn+1) +O(∆t3), r̃n+1 = r(tn+1) +O(∆t3) as analyzed in [35].

Next, we derive the relationship between (2.3)-(2.8) and (2.13)-(2.18). To be specific,
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we can first get

p(1) = p̃(1) −∆tf(pn, rn, qn) + ∆tf(p(1), rn, qn) (2.19)

by (2.3) and (2.13). Then, we use (2.5), (2.15) and (2.19) to obtain

p(2) = p̃(2) +∆t
(
f(p(2), r(1), qn+1) + f(p(1), rn, qn)

)
−∆t

(
f(pn, rn, qn) + f(p̃(1), r̃(1), qn+1)

)
. (2.20)

Combining (2.7), (2.17) and (2.20), we get

p(3) = p̃n+1 +
1

2
∆t
(
f(p(2), r(1), qn+1) + f(p(1), rn, qn)

)
−1

2
∆t
(
f(pn, rn, qn) + f(p̃(1), r̃(1), qn+1)

)
= p(tn+1) +O(∆t3) +

1

2
∆t
(
f(p(tn+2), r(tn+1), q(tn+1))

)
+
1

2
∆t
(
f(p(tn+1), r(tn), q(tn))

)
−1

2
∆t
(
f(p(tn), r(tn), q(tn)) + f(p(tn+1), r(tn+1), q(tn+1))

)
. (2.21)
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Here we have used the fact that p(2), r(1), p(1), p̃(1), r̃(1) are second-order approxima-

tions of the exact solutions at the corresponding time levels since we only march one

step in time. Apply Taylor’s expansion, we can obtain

f(p(tn+2), r(tn+1), q(tn+1)) = fn+1 + fn+1
1 ∆t+O(∆t2), (2.22)

f(p(tn+1), r(tn), q(tn)) = fn+1 − fn+1
2 ∆t− fn+1

3 ∆t+O(∆t2), (2.23)

f(p(tn), r(tn), q(tn)) = fn+1 − fn+1
1 ∆t

−fn+1
2 ∆t− fn+1

3 ∆t+O(∆t2), (2.24)

where

fn+1 = f(p(tn+1), r(tn+1), q(tn+1)),

fn+1
1 = f ′

1(p(t
n+1), r(tn+1), q(tn+1))pt(t

n+1),

fn+1
2 = f ′

2(p(t
n+1), r(tn+1), q(tn+1))rt(t

n+1),

fn+1
3 = f ′

3(p(t
n+1), r(tn+1), q(tn+1))qt(t

n+1).

Therefore, (2.21) is further transformed into

p(3) −∆t
(
f(p(tn+2), r(tn+1), q(tn+1))− f(p(tn+1), r(tn+1), q(tn+1))

)
= p(tn+1) +O(∆t3). (2.25)
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Similarly, with direct computation, r(3) can be written as

r(3) −∆t
(
g1(p(t

n+2), r(tn+1), b(tn+1))− g1(p(t
n+1), r(tn+1), b(tn+1))

)
= r(tn+1) +O(∆t3). (2.26)

Notice that in (2.26), we do not have the g2 term, hence it is not necessary to do the

correction for the diffusion part.

Moreover, in the correction stage (2.9) and (2.10), it is easy to obtain pcor(1) =

p(tn+1) + O(∆t2) and pcor(2) = p(tn+2) + O(∆t2) since we only march one step in

time. Therefore, combining (2.11) and (2.25), we have

pn+1 = p(3) −∆t
(
f(pcor(2), r(3), qn+1)− f(pcor(1), r(3), qn+1)

)
= p(3) −∆t

(
f(p(tn+2), r(tn+1), q(tn+1))

)
−∆t

(
f(p(tn+1), r(tn+1), q(tn+1))

)
+O(∆t3)

= p(tn+1) +O(∆t3).

Similarly, we have rn+1 = r(tn+1) + O(∆t3). Therefore, the SIPEC time integration

(2.3)-(2.12) is second-order accurate in time. □
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Remark 2.3.1 In (2.3)-(2.8), the variables p in diffusion term and convection term

are calculated at different time level for two main reasons: (1) To avoid the correction

of diffusion term, otherwise it will cause anti-diffusion, and the bound-preserving

technique fails to work; (2) In order to preserve the upper bound of r̄, the fluxes in

(2.1) and (2.2) must be calculated at the same time level. In the correction stage, we

use r(3) to approximate r(tn+1) for the sake of the positivity-preserving technique, and

(2.11) has similar form to (2.12) that can preserve upper bound of r̄, which are all

reflected in Section 2.4. Moreover, in (2.9) and (2.10), we continue to use implicit

scheme to avoid time step size restrictions, which is consistent with (2.3) and (2.5).

Now, we can present the fully-discrete IPDG schemes combined with the SIPEC

method. Similar to (2.3)-(2.8), we would get p(1), u(1), r(1), p(2), u(2), r(2), p(3), r(3)

such that for any ξ, ζ ∈ Wh and η ∈ Wh

(d̃(rn)p(1), ξ) = (d̃(rn)pn, ξ) + ∆t
(
P(u(1), ξ) + (qn, ξ)

)
, (2.27)

(a(cn)u(1),η) = K(p(1),η), (2.28)

(r(1), ζ) = (rn, ζ) + ∆tLc(u(1), cn, ζ)

+∆t
(
Ld(un, cn, ζ) + (c̃nqn − rnz1p

(1)
t , ζ)

)
, (2.29)

(d̃(r(1))p(2), ξ) = (d̃(r(1))p(1), ξ) + ∆t
(
P(u(2), ξ) + (qn+1, ξ)

)
, (2.30)

(a(c(1))u(2),η) = K(p(2),η), (2.31)
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(r(2), ζ) = (r(1), ζ) + ∆t(Lc(u(2), c(1), ζ) + Ld(u(1), c(1), ζ)

+(c̃(1)qn+1 − r(1)z1p
(2)
t , ζ)), (2.32)

p(3) =
1

2
pn +

1

2
p(2), (2.33)

r(3) =
1

2
rn +

1

2
r(2), (2.34)

where p
(1)
t = p(1)−pn

∆t
, p

(2)
t = p(2)−p(1)

∆t
, and we use c = P1

(
r
Φ

)
to obtain cn, c(1), c(2), c(3).

Then we can find the numerical solutions pn+1, rn+1 and un+1 by the following cor-

rection stage

(d̃(r(3))pcor(1), ξ) = (d̃(r(3))pn, ξ) + ∆t
(
P(ucor(1), ξ) + (qn+1, ξ)

)
, (2.35)

(a(c(3))ucor(1),η) = K(pcor(1),η), (2.36)

(d̃(r(3))pcor(2), ξ) = (d̃(r(3))p(1), ξ) + ∆t
(
P(ucor(2), ξ) + (qn+1, ξ)

)
, (2.37)

(a(c(3))ucor(2),η) = K(pcor(2),η), (2.38)

(d̃(r(3))pn+1, ξ) = (d̃(r(3))p(3), ξ)−∆t
(
P(ucor(2), ξ)− P(ucor(1), ξ)

)
, (2.39)

(rn+1, ζ) = (r(3), ζ)−∆tLc(ucor(2) − ucor(1), c(3), ζ)

+∆t(r(3)z1(p
cor(2)
t − p

cor(1)
t ), ζ), (2.40)

(a(cn+1)un+1,η) = K(pn+1,η), (2.41)
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where p
cor(2)
t = pcor(2)−p(1)

∆t
and p

cor(1)
t = pcor(1)−pn

∆t
. The flux in (2.40) dif-

fers from the previous definition (2.13), i.e. ûcorc(3) = (ucor)+c(3)+ + α[c(3)]ne,(
ucor = ucor(2) − ucor(1)

)
. Moreover, in practical computing, (2.39) actually simpli-

fies to pn+1 = p(3) + p(1) − pcor(2) + pcor(1) − pn.

2.4 Bound-preserving technique

2.4.1 Second-order bound-preserving

In this subsection, we will apply the SIPEC time discretization and develop the bound-

preserving IPDG schemes to obtain physically relevant numerical approximations in

R2. For simplicity, we only discuss the technique for cells away from ∂Ω, while the

boundary cells can be analyzed following the same lines with minor changes. We can

find a similar analysis for the boundary cells in [23]. We use oij for the numerical

approximation o in cell Kij and the cell average is ōij. We approximate the integrals

in (2.27)-(2.41) by 2-point Gaussian quadratures, and denote {x1
i , x

2
i } and {y1j , y2j} as

the Gaussian quadrature points on Ii and Jj, respectively. The corresponding weights

on the interval [−1
2
, 1
2
] are represented as w1 and w2. Moreover, we define the values of

o(x+
i+ 1

2

, yβj ), o(x
β
i , y

+
j+ 1

2

) and o(x+
i+ 1

2

, y+
j+ 1

2

) as o+
i+ 1

2
,j,β

, o+
i,j+ 1

2
,β
and o++

i+ 1
2
,j+ 1

2

, respectively.

The same is true for the other values.
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In [23], we have completed the bound-preserving analysis for IPDG schemes with for-

ward Euler time integration, which can be directly extended to the bound-preserving

analyses of r(1) and r(2) in (2.27)-(2.32). Therefore, we have the following theorem

for r(1), and the analysis for r(2) is similar.

Theorem 2.4.1 Suppose 0 ≤ rn ≤ Φ, and the parameters α and α̃ satisfy

α ≥ max
2≤i≤Nx−1,
2≤j≤Ny−1,

β=1,2

{u1
(1)+

i+ 1
2
,j,β

, u2
(1)+

i,j+ 1
2
,β
, 0}, (2.1)

α̃ ≥ max

{
∆y

2∆x
DM

11 +
√
3DM

12 ,
∆x

2∆y
DM

22 +
√
3DM

21

}
, (2.2)

where DM
mn = max

(x,y)∈Ω
|Dmn(u

n)(x, y)| (m,n = 1, 2). Moreover, if the fluxes ûc and û

are consistent, then 0 ≤ r̄(1) ≤ Φ̄, under the conditions

∆t

∆x
+

∆t

∆y
≤ 1

6
min

{
Φm

α
, A

(1)
1 , A

(1)
2

}
, (2.3)

DM
11

∆t

∆x2
+ 2(α̃ +DM

12)
∆t

∆x∆y
≤ 1

12
Φm, (2.4)

DM
22

∆t

∆y2
+ 2(α̃ +DM

21)
∆t

∆x∆y
≤ 1

12
Φm, (2.5)

∆t ≤ 1

6
min

{
1

z1p
(1)
M

,
1

z2p
(1)
M

,
Φm

qM

}
, (2.6)
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where

Φm = min
(x,y)∈Ω

Φ(x, y), p
(1)
M = max

i,j,
β,γ=1,2

{
p
(1)
t (xβ

i , y
γ
j ), 0

}
, qnM = max

i,j,
β,γ=1,2

{
−qn(xβ

i , y
γ
j ), 0

}
,

A
(1)
1 = min

2≤i≤Nx−1,
2≤j≤Ny−1,

β=1,2

Φ+∓
i− 1

2
,j± 1

2

α− u1
(1)+

i− 1
2
,j,β

, A
(1)
2 = min

2≤i≤Nx−1,
2≤j≤Ny−1,

β=1,2

Φ∓+
i± 1

2
,j− 1

2

α− u2
(1)+

i,j− 1
2
,β

.

Based on the above theorem, we immediately conclude 0 ≤ r̄(3) ≤ Φ̄ by (2.34). Next,

we demonstrate the bound-preserving technique for r̄n+1. In (2.40), take ζ = 1 in Kij

to obtain the equation satisfied by r̄n+1

r̄n+1
ij = Hc(r,u, c) +Hs(r, pt), (2.7)

where

Hc(r,u, c) =
1

2
r̄
(3)
ij

−λ

(∫
Jj

ûcor
1 c(3)i− 1

2
,j − ûcor

1 c(3)i+ 1
2
,jdy

)

−λ

(∫
Ii

ûcor
2 c(3)i,j− 1

2
− ûcor

2 c(3)i,j+ 1
2
dx

)
, (2.8)

Hs(r, pt) =
1

2
r̄
(3)
ij +∆tz1r

(3)
ij pcort , (2.9)
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and

ucor = ucor(2) − ucor(1),

pcort = p
cor(2)
t − p

cor(1)
t ,

with λ = ∆t
∆x∆y

and ucor = (ucor
1 , ucor

2 )T . We consider the source term Hs first.

Lemma 2.4.1 Suppose r(3) > 0 (c(3) > 0), then Hs(r, pt) ≥ 0 under the condition

∆t ≤ 1

2z1pcorM

, (2.10)

where

pcorM = max
i,j,

β,γ=1,2

{
−pcort (xβ

i , y
γ
j ), 0

}
. (2.11)

Proof The cell averages are approximated by the 2-point Gaussian quadrature, then

Hs(r, pt) :=
1

2
r̄
(3)
ij +∆tz1r

(3)
ij pcort

=
1

2

2∑
β,γ=1

r(3)(xβ
i , y

γ
j )wβwγ +∆tz1

2∑
β,γ=1

r(3)(xβ
i , y

γ
j )p

cor
t (xβ

i , y
γ
j )wβwγ

=
2∑

β,γ=1

wβwγr
(3)(xβ

i , y
γ
j )

(
1

2
+ ∆tz1p

cor
t (xβ

i , y
γ
j )

)
.

Therefore, if (2.10) is satisfied, Hs(r, pt) ≥ 0. □

Now we analyze the convection term Hc and the lemma is shown below.

Lemma 2.4.2 Suppose r(3) > 0 (c(3) > 0), then Hc(r,u, c) ≥ 0 if α and the time
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step ∆t satisfy

α ≥ max
2≤i≤Nx−1,
2≤j≤Ny−1,

β=1,2

{−u1
cor+
i+ 1

2
,j,β

, −u2
cor+
i,j+ 1

2
,β
, 0}, (2.12)

and

∆t

∆x
+

∆t

∆y
≤ 1

4
min

{
Φm

α
, Acor

1 , Acor
2

}
, (2.13)

where Φm = min
(x,y)∈Ω

Φ(x, y), and

Acor
1 = min

2≤i≤Nx−1,
2≤j≤Ny−1,

β=1,2

Φ+∓
i− 1

2
,j± 1

2

α + u1
cor+
i− 1

2
,j,β

, Acor
2 = min

2≤i≤Nx−1,
2≤j≤Ny−1,

β=1,2

Φ∓+
i± 1

2
,j− 1

2

α + u2
cor+
i,j− 1

2
,β

.

Proof As the general treatment, we rewrite the cell average r̄
(3)
ij in the following

form:

r̄
(3)
ij =

2∑
β=1

wβ

2
(r

(3)+

i− 1
2
,j,β

+ r
(3)−
i+ 1

2
,j,β

) =
2∑

β=1

wβ

2
(r

(3)+

i,j− 1
2
,β
+ r

(3)−
i,j+ 1

2
,β
).

Denote λ1 =
∆t
∆x

and λ2 =
∆t
∆y

, then

Hc(r,u, c) =

(
λ1

2(λ1 + λ2)
r̄
(3)
ij − λ

∫
Jj

ûcor
1 c(3)i− 1

2
,j − ûcor

1 c(3)i+ 1
2
,jdy

)

+

(
λ2

2(λ1 + λ2)
r̄
(3)
ij − λ

∫
Ii

ûcor
2 c(3)i,j− 1

2
− ûcor

2 c(3)i,j+ 1
2
dx

)
:=

2∑
β=1

wβ (λ1L1 + λ2L2) ,
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where

L1 =
1

4(λ1 + λ2)
(r

(3)+

i− 1
2
,j,β

+ r
(3)−
i+ 1

2
,j,β

)− (ûcor
1 c(3))i− 1

2
,j,β + (ûcor

1 c(3))i+ 1
2
,j,β,

L2 =
1

4(λ1 + λ2)
(r

(3)+

i,j− 1
2
,β
+ r

(3)−
i,j+ 1

2
,β
)− (ûcor

2 c(3))i,j− 1
2
,β + (ûcor

2 c(3))i,j+ 1
2
,β.

We only need to show L1 ≥ 0, and L2 ≥ 0. Notice that r and c are both linear

functions in Ii and Jj, then it is easy to check that

r+
i− 1

2
,j,β

= µβ
1r

++
i− 1

2
,j− 1

2

+ µβ
2r

+−
i− 1

2
,j+ 1

2

= µβ
1c

++
i− 1

2
,j− 1

2

Φ++
i− 1

2
,j− 1

2

+ µβ
2c

+−
i− 1

2
,j+ 1

2

Φ+−
i− 1

2
,j+ 1

2

,

c+
i− 1

2
,j,β

= µβ
1c

++
i− 1

2
,j− 1

2

+ µβ
2c

+−
i− 1

2
,j+ 1

2

,

with µ1
1 = µ2

2 =
3+

√
3

6
and µ2

1 = µ1
2 =

3−
√
3

6
.

Therefore,

L1 =c
(3)++

i− 1
2
,j− 1

2

µβ
1

(
Φ++

i− 1
2
,j− 1

2

4(λ1 + λ2)
− u1

cor+
i− 1

2
,j,β

− α

)

+ c
(3)+−
i− 1

2
,j+ 1

2

µβ
2

(
Φ+−

i− 1
2
,j+ 1

2

4(λ1 + λ2)
− u1

cor+
i− 1

2
,j,β

− α

)

+ c
(3)−+

i+ 1
2
,j− 1

2

µβ
1

(
Φ−+

i+ 1
2
,j− 1

2

4(λ1 + λ2)
− α

)
+ c

(3)−+

i− 1
2
,j− 1

2

µβ
1α

+ c
(3)−−
i+ 1

2
,j+ 1

2

µβ
2

(
Φ−−

i+ 1
2
,j+ 1

2

4(λ1 + λ2)
− α

)
+ c

(3)−−
i− 1

2
,j+ 1

2

µβ
2α

+ c
(3)++

i+ 1
2
,j− 1

2

µβ
1

(
u1

cor+
i+ 1

2
,j,β

+ α
)
+ c

(3)+−
i+ 1

2
,j+ 1

2

µβ
2

(
u1

cor+
i+ 1

2
,j,β

+ α
)
.
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Then we have L1 ≥ 0 if α and λ1+λ2 satisfy (2.12) and (2.13), respectively. Similarly,

L2 is transformed in the same way. Then L2 ≥ 0 under the conditions (2.12) and

(2.13). □

The above lemmas guarantee r̄n+1 is positive. However, we still need to prove r̄n+1 ≤

Φ̄, and the result is as follows.

Theorem 2.4.2 Suppose the conditions in Lemma 2.4.1 and Lemma 2.4.2 are sat-

isfied. Moreover, we assume 0 ≤ r(3) ≤ Φ and the flux pair (ûc, û) is consistent, then

0 ≤ r̄n+1 ≤ Φ̄ under another condition

∆t ≤ 1

2z2pcorM

, (2.14)

where pcorM is given in (2.11).

Proof Since the flux pair (ûc, û) are consistent, û − ûc = ûc2 where c2 = 1 − c.

Take ξ = ζ in (2.39), and subtract (2.40) from (2.39) to obtain

(rn+1
2 , ζ) = (r

(3)
2 , ζ)−∆t

(
(ucorc

(3)
2 ,∇ζ) +

∑
e∈Γ0

∫
e

ûcorc
(3)
2 · ne[ζ]ds− (r

(3)
2 z2p

cor
t , ζ)

)
,

(2.15)

where r2 = Φ− r. We can easily check that (2.15) is exactly (2.40) with r, c, and z1

replaced by r2, c2, and z2, respectively. Following the same analyses in Lemma 2.4.1

and Lemma 2.4.2, we can prove r̄n+1
2 ≥ 0 under the conditions given in this theorem,
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which further implies r̄n+1 ≤ Φ̄. □

Remark 2.4.1 By Theorem 2.4.1 and Theorem 2.4.2, we prove that r̄(1), r̄(2), r̄(3)

and r̄n+1 are between [0, Φ̄] under different conditions. In fact, the basic idea of the

proofs is the same: first, apply the positivity-preserving techniques to r; then, subtract

the scheme of the concentration from that of the pressure to obtain that of the second

component concentration, and analyze the positivity of r̄2; finally, enforce r1+ r2 = Φ

(c1 + c2 = 1) by choosing consistent numerical fluxes.

Remark 2.4.2 In practice, D would be very small, and the time step size restriction

given in Theorem 2.4.1 and Theorem 2.4.2 are very mild unless the meshes are ex-

tremely refined. Actually, in all the numerical experiments, we will choose ∆t ∼ ∆x.

2.4.2 Slope limiter

With Theorem 2.4.1 and Theorem 2.4.2, we can guarantee the numerical cell aver-

ages r̄(1), r̄(2), r̄(3), and r̄n+1 to be physically relevant. However, the corresponding

numerical approximations of r may be negative or larger than Φ. Therefore, we need

to apply a slope limiter to modify r. As discussed in [29], the procedure is given in

the following steps.
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1. Define Ŝ = {(x, y) ∈ K : r(x, y) ≤ 0}. Take

r̂ = r + θ
( r̄
Φ̄
Φ− r

)
, θ = max

(x,y)∈Ŝ

{
−r(x, y)Φ̄

r̄Φ(x, y)− r(x, y)Φ̄
, 0

}
;

2. Set r2 = Φ− r̂, and repeat the above step for r2 to get r̂2;

3. Take r̃ = Φ− r̂2 as the new approximation.

Remark 2.4.3 After the above three steps, we have 0 ≤ r̃ ≤ Φ. It is easy to

check that the limiter does not change the numerical cell averages, i.e.
∫
Kij

r̃(x)dx =∫
Kij

r(x)dx. Moreover, it is proved that the limiter does not affect the accuracy. See

[29] for more information.

2.5 Numerical experiments

In this section, we provide numerical examples to illustrate the accuracy and capa-

bility of the bound-preserving IPDG method with the SIPEC time discretization for

compressible miscible displacements in porous media.
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2.5.1 One dimensional case

In this subsection, we solve compressible miscible displacements in one space dimen-

sion on the computational domain [0, 2π]. Unless otherwise stated, we set N = 80 and

∆x = 2π
N
. In the first example, we test the accuracy of the fully-discrete SIPEC-IPDG

schemes with and without bound-preserving technique.

Example 2.5.1

We set the initial conditions as

c(x, 0) =
1

2
(1− cos(x)) , p(x, 0) = cos(x)− 1,

and source parameters q and c̃ are taken as

q(x, t) = e−t, c̃ =
1

2

(
e−γt(sin2(x)− cos(x)) + 1

)
.

Moreover, we choose other parameters as

z1 = z2 = 1, ϕ(x) = 1, D(u) = γ, κ(x) = µ(c) = 1.
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It is easy to verify that the exact solutions are

c(x, t) =
1

2

(
1− e−γt cos(x)

)
, p(x, t) = e−t (cos(x)− 1) .

In the numerical simulation, we take ∆t = 0.16∆x and final time T = 1. We choose

γ = 10−5 such that the exact solution c is very close to 0 for t > 0, causing the bound-

preserving limiter to be triggered frequently. We compute the L2-norm of the error

between the numerical and exact solutions of c. The results are shown in Table 2.1,

where we can observe optimal convergence rates of the SIPEC-IPDG method with

and without the bound-preserving limiter. Therefore, the bound-preserving technique

Table 2.1
Example 2.5.1: Accuracy test of c for the fully-discrete SIPEC-IPDG

schemes with and without the bound-preserving limiter.

N
With limier No limiter

L2 error order L2 error order
10 2.57e-2 - 1.90e-2 -
20 5.57e-3 2.21 4.59e-3 2.05
40 1.26e-3 2.14 1.13e-3 2.02
80 2.98e-4 2.08 2.82e-4 2.01
160 7.21e-5 2.05 7.02e-5 2.00

does not degenerate the accuracy for one dimensional case.

Moreover, we also consider the IMPEC-IPDG method, where the backward and for-

ward Euler methods are used to discretize time derivatives of pressure and concen-

tration, respectively. We also take ∆t = 0.16∆x and T = 1, and the results are given
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in Table 2.2. From the table, we observe first-order accuracy because of ∆t ∼ ∆x.

Table 2.2
Example 2.5.1: Accuracy test of c for the fully-discrete IMPEC-IPDG

schemes with and without the bound-preserving limiter.

N
With limier No limiter

L2 error order L2 error order
10 3.22e-2 - 2.89e-2 -
20 1.32e-2 1.29 1.29e-2 1.16
40 6.48e-3 1.03 6.46e-3 1.00
80 3.28e-3 0.98 3.27e-3 0.98
160 1.66e-3 0.98 1.66e-3 0.98

Next, we consider the following example to test the effect of the bound-preserving

technique.

Example 2.5.2

We choose the initial conditions as

c(x, 0) =
1

2
(cos(x) + 1) , p(x, 0) = −γ cos(x).

Other parameters are taken as

q(x, t) = 0, z1 = 0.35, z2 = µ(c) = κ(x) = 1, ϕ(x) =
1

4
(3 + cos(x)) , D(u) = 0.

First, we compute the concentration c at final time T = 1 with ∆t = 0.02∆x. Since
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D = 0, the diffusion term cannot provide any stability to the numerical schemes.

We set γ = 1, 2, 3, 4 and apply the bound-preserving limiter. The numerical

results of c are given in Figure 2.1. From the figure, we can see that the larger
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Figure 2.1Example 2.5.2: Numerical approximations of c for γ = 1 (red),
2 (green), 3 (blue), 4 (black) with bound-preserving limiter.
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Figure 2.2Example 2.5.2: Numerical approximations of c for γ = 10 with
(green) and without (red) bound-preserving limiter.

the γ, the larger the gradient of the numerical approximation. We also set γ = 10

to test the effect of the bound-preserving limiter. The results are shown in Figure

2.2, where the green and red curves are the numerical approximations c obtained
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(b) c by IMPEC time discretization

Figure 2.3Example 2.5.2: Concentrations c by different time methods at
T=1.

with and without the bound-preserving limiter, respectively. We can observe that,

with the bound-preserving limiter, the green curve is not oscillatory and the numerical

approximation lies between 0 and 1. This figure clearly demonstrates that the bound-

preserving technique is effective, which can avoid strong oscillation and physically

irrelevant values.

Next, we change the time step size ∆t = 0.08∆x to test the difference between the

SIPEC and the IMPEC methods. The numerical approximations of c are shown in

Figure 2.3. It is easy to see that Figure 2.3(b) is clearly unstable. In fact, if the time

step size is reduced to 0.07∆x, the result by the IMPEC method is the same as that

of Figure 2.3(a), which indicates that the time step size of the SIPEC method can be

larger than that of the IMPEC method.

Example 2.5.3
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We choose the initial conditions as

c(x, 0) =


1, x < 1,

0, x ≥ 1,

p(x, 0) =


5, x < 1,

0, x ≥ 1.

Other parameters are taken as

q(x, t) = 0, z1 = 0.1, κ(x) = µ(c) = z2 = 1, ϕ(x) = 1, D(u) = 0.

We compute concentration c at time T = 1 with ∆t = 0.06∆x. We solve the problem

with the bound-preserving limiter, and the result is shown in Figure 2.4. We can

observe that the numerical approximation of c is between 0 and 1. Next, we solve the

problem without the bound-preserving limiter and the numerical approximation blows

up at T ≈ 0.002 s even though we take time step size as small as ∆t = 0.0001∆x.

In [23], we proved that the blow-up of the numerical approximation is caused by the

ill-posedness of the system. This result demonstrates the necessity of the bound-

preserving technique for compressible miscible displacements in porous media.

Moreover, we simulate the example with the SSP-RK2 time discretization. It turns

out that the CPU time by the SSP-RK2 method is about 156.5 s with maximum

time step size ∆t = 0.0004∆x, while the CPU time by the SIPEC method is about

4.3 s with time step size ∆t = 0.06∆x. Therefore, we can conclude that the SIPEC
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Figure 2.4Example 2.5.3: Numerical approximations of c at T = 1.

method is superior to the traditional SSP-RK2 method.

In addition to the above, we also test the difference between the SIPEC and the IM-

PEC methods. The results are shown in Figure 2.5, where the red and blue curves are

the numerical approximations of c obtained by the SIPEC and the IMPEC method,

respectively. We can see that when the time step size is small, the difference between

the two methods is tiny. Moreover, the larger the time step size, the more significant

the difference. More precisely, the SIPEC method is better than the IMPEC method

based on the following three points: (1) The oscillation of c obtained from the SIPEC

scheme is less than that from the IMPEC scheme. (2) The time step size has little

effect on the SIPEC scheme. (3) The time step size of the SIPEC method can be

much larger than that of the IMPEC method.
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Figure 2.5Example 2.5.3: Concentrations c by SIPEC (red) and IMPEC
(blue) time discretizations at T = 1 with different time step size ∆t.

2.5.2 Two dimensional case

In this subsection, we solve (2.1)-(2.2) with boundary conditions (2.4). The compu-

tational domain is set to be Ω = [0, 2π] × [0, 2π].Unless otherwise stated, we take

Nx = Ny = N , ∆x = 2π
Nx

and ∆y = 2π
Ny

. In the following example, we test the

accuracy of the bound-preserving IPDG schemes with the SIPEC time discretization.
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Example 2.5.4

We set the initial conditions as

c(x, y, 0) =
1

2
(1− cos(x) cos(y)) , p(x, y, 0) = cos(x) cos(y)− 1,

and the source parameters q and c̃ are chosen as

q(x, y, t) = 2e−2t,

c̃ =
1

2

(
e−2γt

(
1

2
sin2(x) cos2(y) +

1

2
cos2(x) sin2(y)− cos(x) cos(y)

)
+ 1

)
.

Moreover, we choose other parameters as

z1 = z2 = 1, ϕ(x, y) = κ(x, y) = µ(c) = 1, D(u) =

 γ 0

0 γ

 .

It is easy to see that the exact solutions are

c(x, y, t) =
1

2

(
1− e−2γt cos(x) cos(y)

)
, p(x, y, t) = e−2t (cos(x) cos(y)− 1) .

We choose ∆t = 0.08min{∆x, ∆y}, T = 0.1 and γ = 10−5. The computational

results are given in Table 2.3, illustrating the L2 error and convergence orders for c

with and without bound-preserving limiter. We can observe second-order accuracy of

51



the SIPEC-IPDG methods with and without the bound-preserving limiter. Therefore,

the limiter does not kill the accuracy for two dimensional case.

Table 2.3
Example 2.5.4: Accuracy test of c for the fully-discrete SIPEC-IPDG

schemes with and without the bound-preserving limiter.

N
With limier No limiter

L2 error order L2 error order
10 5.24e-2 - 4.34e-2 -
20 1.12e-2 2.22 1.06e-2 2.03
40 2.68e-3 2.07 2.64e-3 2.01
80 6.61e-4 2.02 6.59e-4 2.00
160 1.65e-4 2.00 1.65e-4 2.00

And we also consider the IMPEC-IPDG methods with ∆t = 0.08min{∆x, ∆y}, T =

0.1. We can find the results in Table 2.4. The accuracy is first-order. By comparing

Table 2.3 and Table 2.4, we conclude that the SIPEC method is better than the

IMPEC method.

Table 2.4
Example 2.5.4: Accuracy test of c for the fully-discrete IMPEC-IPDG

schemes with and without the bound-preserving limiter.

N
With limier No limiter

L2 error order L2 error order
10 5.30e-2 - 4.41e-2 -
20 1.26e-2 2.07 1.20e-2 1.87
40 4.14e-3 1.60 4.12e-3 1.55
80 1.78e-3 1.22 1.78e-3 1.21
160 8.62e-4 1.05 8.62e-4 1.05
320 4.30e-4 1.00 4.30e-4 1.00

Example 2.5.5
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We choose the initial conditions as

c(x, y, 0) =


1, x ≤ π

2
, y ≤ π

2
,

0, otherwise,

p(x, y, 0) = cos
(x
2

)
+ cos

(y
2

)
.

Other parameters are taken as

q(x, y, t) = 0, z1 = 1, z2 = 10, µ(c) = κ(x, y) = ϕ(x, y) = 1, D(u) = 0.

We compute c at final time T = 0.1, 1.0, 1.4, 2.0 with Nx = Ny = 80, ∆t =

0.1min{∆x,∆y} and the bound-preserving limiter. The results are given in Figure

2.6. From the figures, we can see that the numerical approximations are between 0 and

1. To test the effectiveness of the bound-preserving technique for two dimensional

case, we simulate the distributions of c at different time T = 0.1, 1.0 along the

diagonal y = x with and without bound-preserving limiter. The results are given in

Figure 2.7. From Figure 2.7(b) and Figure 2.7(d), we can observe strong oscillations

and physically irrelevant values, while concentrations c in Figure 2.7(a) and Figure

2.7(c) do not, indicating the effectiveness of the bound-preserving technique.

To test the good performance of the SIPEC method for problems in two space dimen-

sions, we simulate the example with the SSP-RK2 method at T = 1. Without the

bound-preserving technique, the CPU time by the SSP-RK2 method is about 330.6 s
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(a) c at T=0.1 (b) c at T=1.0

(c) c at T=1.4 (d) c at T=2.0

Figure 2.6Example 2.5.5: Concentrations c at different time with bound-
preserving limiter.

with maximum time step size ∆t = 0.004min{∆x,∆y}, while the CPU time by the

SIPEC method is about 45.4 s with time step size ∆t = 0.1min{∆x,∆y}. With the

bound-preserving technique, the CPU time by the SSP-RK2 method is about 361.1

s with time step size ∆t = 0.004min{∆x,∆y}, while the CPU time by the SIPEC

method is about 38.4 s with time step size ∆t = 0.12min{∆x,∆y}. Through the
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Figure 2.7Example 2.5.5: Concentration c with and without bound-
preserving limiter.

above comparison, we can conclude that the SIPEC method is superior to the tra-

ditional SSP-RK2 method regardless of whether the bound-preserving technique is

used.

Example 2.5.6
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We choose the initial conditions as

c(x, y, 0) = 0.5, p(x, y, 0) = 0.

Other parameters are taken as

z1 = 0.4, z2 = 0.6, ϕ(x, y) = 1, D(u) = 0.1

 |u| 0

0 |u|

 .

The injection well is located at the upper-right corner with q = 1
∆x∆y

and c̃ = 1, and

production well is located at the lower-left corner with q = − 1
∆x∆y

.

We choose ∆t = 0.06min{∆x,∆y}, Nx = Ny = 40 and final time T = 1, 5, 10, 15.

The results are given in Figure 2.8. We can observe that all the numerical approxi-

mations of c are between 0 and 1. Therefore, the bound-preserving technique works

for the petroleum production simulations.

2.6 Concluding remarks

In this paper, we constructed IPDG methods for two-component compressible misci-

ble displacements in porous media. Bound-preserving technique has been applied to

the problems in one and two space dimensions to obtain physically relevant numerical
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(a) c at T=1 (b) c at T=5

(c) c at T=10 (d) c at T=15

Figure 2.8Example 2.5.6: Concentration c at different time with bound-
preserving limiter.

approximations. Moreover, we presented a novel SIPEC method. Numerical experi-

ments were given to demonstrate the effectiveness of the bound-preserving technique,

as well as the superiority of the proposed SIPEC method by comparing it with tradi-

tional second-order strong-stability-preserving Runge-Kutta and first-order IMPEC

methods. Finally, we point out that the SIPEC method presents a significant advan-

tage compared with the traditional SSP-RK2 if D is small. However, in case D is
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large, SIPEC the advantage may not be significant, and we will discuss this in future

work.
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Chapter 3

Oscillation-free implicit pressure

explicit concentration

discontinuous Galerkin methods

for compressible miscible

displacements

The system of compressible miscible displacements is widely adopted to model sur-

factant flooding in enhanced oil recovery techniques, where a low-viscosity fluid is

injected underground to replace the high-viscosity oil. When the mobility ratio of
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the injected fluid to oil is high, the waterflood front tends to be unstable and ex-

hibits a finger-like growth pattern, known as viscous fingering. Due to its unstable

nature, the viscous fingering phenomenon is sensitive to mesh orientation and numer-

ical discretization. Therefore, high-order numerical methods are preferable to reduce

numerical artifacts and mesh dependence. In this paper, we propose a high-order dis-

continuous Galerkin method for the coupled nonlinear system of compressible miscible

displacements to simulate the viscous fingering fluid instability in porous media. We

adopt the IMplicit Pressure Explicit Concentration time marching approach based

on implicit-explicit Runge-Kutta methods to achieve high-order temporal accuracy.

Additionally, we introduce an oscillation-free damping term to control the spurious

oscillations encountered in the waterflood front due to the large gradient of saturation.

We have conducted ample numerical tests in two space dimensions to demonstrate the

effectiveness and robustness of the proposed schemes in recovering viscous fingering.

Keywords: compressible miscible displacements, viscous fingering, discontinuous Galerkin,

IMPEC, oscillation-free.

3.1 Introduction

A Hele-Shaw cell consists of two parallel glass plates separated by a narrow space

[83]. The distance between the two glass plates is referred to as the width of the
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cell’s gap. The flow through a Hele-Shaw cell with closely spaced glass plates or a

small gap is mathematically analogous to the flow through a two-dimensional porous

media[84]. When a less viscous fluid displaces a more viscous one in a porous media,

the interface deforms into finger-like patterns, often referred to as viscous fingering

[85]. Numerical modeling of viscous fingering dynamics and miscible displacements

in porous media holds significant relevance in various applications within oil recov-

ery and addressing environmental pollution. The dynamics of viscous fingering are

mathematically modeled using Darcy’s law.

The study of miscible displacements in porous media began with their introduction

in [1, 2], where mixed finite element methods were utilized. Subsequently, the com-

pressible problem was explored in [3]. Following this, several new numerical methods

emerged, including the finite difference method [86], the splitting positive definite

mixed element method [5], and the H1-Galerkin mixed method [6]. Additionally,

an Eulerian-Lagrangian localized adjoint method was introduced to solve the trans-

port equation, along with a mixed finite element method to solve the flow equation

[7]. Furthermore, Kumar [8] developed a mixed and discontinuous finite volume

method for incompressible miscible displacement problems. In [9], a discrete duality

finite volume scheme was proposed to address the problem, with the convergence of

the scheme being studied. In recent years, Discontinuous Galerkin (DG) methods

have become increasingly popular for solving compressible miscible displacements in
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porous media [10, 11, 12, 13, 14]. Specialized numerical techniques have been devel-

oped to manage the jumps in numerical approximations and address the non-linearity

of the convection term. Furthermore, extensive research has been conducted on DG

methods for incompressible miscible displacements, as evidenced by works such as

[8, 15, 16, 18, 19, 67, 87].

Most of the above mentioned methods can effectively simulate most of the problems

in miscible displacements. However, if the problem setting is tricky, for example,

flow passes an obstacle, the oscillations in the numerical results can be harmful. As

demonstrated in [20], direct numerical simulation may result in severe overshoots,

leading to nonphysical numerical approximations. The first way to fix this issue

is to apply the bound-preserving technique. In the context of convection-diffusion

equations, the second-order bound-preserving technique has been explored in [21].

However, extending it to high-order schemes is not a straightforward task. The third-

order MPP scheme based on LDG methods on overlapping meshes [24] and direct

DG method [25] were introduced. Additionally, other high-order methods have been

investigated in [26, 27, 28, 88, 89], which involve modifying numerical fluxes. However,

the previous high-order extensions mentioned above have given little attention to

bound-preserving techniques for miscible displacements. In many practical scenarios,

the physical parameters are closely linked to the concentration c. If c falls outside

the interval [0, 1], it is impossible to obtain the parameters in the system. Moreover,

in some extreme cases, the numerical approximations may become unstable [23].
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We will illustrate this issue through numerical experiments in Section 3.5. In [23],

Guo and Yang first proposed bound-preserving DG methods for the coupled system

of two-component compressible miscible displacements. The authors theoretically

demonstrated in [23] that this algorithm can produce physically relevant numerical

cell averages. A slope limiter can then be employed to ensure that the numerical

approximations stay within the desired bounds. Later, in [29], the authors expanded

this idea to multi-component miscible displacements, proposing high-order bound-

preserving DG methods on triangular meshes and showing that the slope limiter does

not affect accuracy. Bound-preserving finite difference methods were also developed

in [30]. An extension to problems with fractures following this approach can be found

in [31].

Unfortunately, the above bound-preserving techniques depend on explicit strong-

stability-preserving Runge-Kutta (SSP-RK) time discretizations [34, 35, 36, 37] that

require small time step sizes, leading to high computational expenses. As a result,

these methods are not viable for numerous applications. The primary factor con-

tributing to the need for small time steps is the heterogeneity of the media, as de-

tailed in [38, 90] and related works. In certain areas of the media, permeability can

be exceedingly high, resulting in significant diffusion coefficients in the pressure equa-

tion. Hence, an alternative approach involves considering implicit formulations of

the pressure equation. Additionally, it is preferable to solve the concentration equa-

tion explicitly, as implicit schemes may result in a fully coupled system, leading to
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difficulties in implementation. While fully implicit schemes like those in [39, 40] of-

fer unconditional stability, they demand significant computational resources for each

time step. In contrast, the IMplicit Pressure Explicit Concentration (IMPEC) scheme

[41, 42, 43, 44, 48, 91] has gained popularity for simulating compressible flows in

porous media. This scheme involves treating the pressure equation implicitly while

updating the concentration equation explicitly. By decoupling the system and solving

the equations sequentially, it imposes mild time step size restrictions from the con-

centration equation. Thus, it is simple to configure, efficient to execute, and requires

less computer memory per time step. However, the traditional IMPEC methods are

limited to first-order time accuracy, and constructing a second-order IMPEC time

method that is compatible with bound-preserving techniques remains challenging.

The only work in this direction was given in [50, 51]. Unfortunately, the idea can

hardly be used to design a high-order scheme, hence the method cannot effectively

simulate viscous fingering phenomena. We will provide comparative tests between the

second-order and high-order schemes to demonstrate the necessity of the high order

method.

Though the bound-preserving techniques can effectively yield physically relevant nu-

merical approximations, their success depends heavily on theoretical analysis, which

is generally not straightforward, especially for high-order methods. Another approach

is to effectively suppress the spurious oscillations near the discontinuity in high order

DG methods. To do so, various limiters have been developed such as theminmod -type
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TVD limiter, total variation bounded (TVB) limiter, and weighted ENO (WENO)

limiter, etc. For more details, see e.g. [52, 53, 54] and references therein. These

limiters aim to adjust the numerical solution post-calculation, utilizing diverse tools

and indicators to identify troubled cells, initiating a limiting process for marked cells.

However, some limiters are problem-dependent and may compromise the desirable

properties of the original schemes. An alternative method involves introducing artifi-

cial terms directly into the weak formulation so as to obtain certain properties such as

entropy stability or shock capturing, see e.g. [55]. Following this direction, in [56, 92] a

damping term was introduced into the DG scheme for hyperbolic equations. Through

a unified selection of damping coefficients, the damping term remains small in regions

of smooth solutions but becomes effective near the discontinuity. This approach auto-

matically assesses the intensity of the discontinuity, managing numerical oscillations

without relying on problem-dependent parameters, and hence easy to implement. In

[57], the OFDG methods have been successfully applied to multi-component chemi-

cally reacting flows, and the scheme is conservative and bound-preserving. Moreover,

numerical experiments demonstrated that the OFDG methods much performs better

than the DG schemes with TVD limiters. This motivates us to use OFDG methods

to suppress the oscillations and construct the IMPEC methods for miscible displace-

ments.

The aim of the present paper is to propose a new framework to design a conservative

high order interior penalty DG scheme with oscillation-free damping term (OFDG)
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for the compressible miscible displacements with IMPEC time discretization. The

main idea of the IMPEC method is based on the implicit-explicit Runge-Kutta [58]

time marching. This treatment can maintain the high-order temporal accuracy while

also ensure the large time-step size to save the computational cost. We demonstrate

the robustness and accuracy of a fully coupled DG method with an oscillation-free

damping term on a rectangular mesh. We provide the simulation of viscous fingering

phenomenon by using the high order oscillation-free DG schemes.

The rest of the paper is organized as follows. In Section 3.2, we present the mathemat-

ical model that governs the compressible miscible displacement process. In Section

3.3, we introduce the notations to be used throughout the paper then construct the

numerical scheme. Later we illustrate high order extension of the proposed scheme

in Section 3.4. Then numerical results are given to demonstrate the accuracy and

capability of the method in Section 3.5. We end in Section 3.6 with some concluding

remarks.

3.2 Mathematical Model

In this section, we present the governing equations that describe the compressible

miscible displacements in porous media. Detailed discussion on physical aspects is
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provided in [3]. The classical equations governing the compressible miscible dis-

placement in porous media in two spatial dimensions on the computational domain

Ω = [0, 2π]× [0, 2π] can be described by the following equations:

d(c)
∂p

∂t
+∇ · u = qI − qP , (x, y) ∈ Ω, 0 < t ≤ T, (3.1)

u = −∇ ·
(
κ(x, y)

µ(c)
∇p

)
, (x, y) ∈ Ω, 0 < t ≤ T, (3.2)

ϕ
∂c

∂t
+ b(c)

∂p

∂t
+ u · ∇c−∇ · (D∇c) = qI ĉ− qP c, (x, y) ∈ Ω, 0 < t ≤ T.(3.3)

where the physical unknown variables p, u, and c denote the pressure within the

fluid mixture, the Darcy velocity (which measures the volume flowing across a unit

cross-section per unit time) of the mixture, and the volumetric concentration of the

species of interest, respectively. The flow and transport processes in the system are

influenced by the functions qI and qP which represent injection wells and production

wells respectively. Additionally, the system includes several parameters such as the

porosity of the medium, denoted by ϕ, the permeability represented by κ, the fluid

viscosity denoted by µ, the injected concentration ĉ. The dispersion tensor D can be

determined based on a semi-empirical relation [93]

D (u) = ϕ(x, y)(dmolI+ dlong |u|E+ dtran |u|E⊥), (3.4)
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where E is the orthogonal projection along the velocity vector. It takes the form

(E (u))ij =
uiuj

|u|2
, 1 ≤ i, j ≤ 2, u = (u1, u2)

T ,

and E⊥ = I − E is the orthogonal complement. The parameter dmol is related to

molecular diffusion; dlong measures the longitudinal dispersion, which accounts for

dispersion along the direction of flow. and dtran represents the transverse dispersion,

which captures dispersion in directions perpendicular to the flow. Here, we assume

D is positive semi-definite. Furthermore, the pressure is uniquely determined except

for a constant term. Then we assume
∫
Ω
pdxdy = 0 at t = 0. To simplify matters, we

focus on a displacement problem involving two components. Extending the analysis

to a multi-component fluid is straightforward. The remaining parameters can be

described as follows:

c1 = 1− c2, d(c) = ϕ
2∑

j=1

zjcj, b(c) = ϕc1

{
z1 −

2∑
j=1

zjcj

}
,

where ci represents the concentration of the ith component of the fluid mixture, while

zi corresponds to the “constant-compressible” factor. In this paper, we complete the

system by impermeable boundary conditions:

u · n = 0, (D∇c− cu) · n = 0, (3.5)
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where n represents the unit outer normal of the boundary ∂Ω. The initial solutions

of concentration and pressure are provided as follows:

c(x, y, 0) = c0(x, y), p(x, y, 0) = p0(x, y), (x, y) ∈ Ω.

3.3 The semi-discrete OFDG scheme

In this section, we will introduce the notations that will be utilized throughout the

paper. Subsequently, we will develop the OFDG scheme for the compressible miscible

displacement problem (3.1)-(3.3).

3.3.1 Basic notations

We first demonstrate the notation used throughout the paper. We only consider the

rectangular meshes in this paper. Let Ω = [0, 2π]2 be the computational domain,

comprising of cells

Ki,j = {(x, y) : xi− 1
2
≤ x ≤ xi+ 1

2
, yj− 1

2
≤ y ≤ yj+ 1

2
}, (i = 1, . . . , Nx, j = 1, . . . , Ny)
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where 0 = x 1
2
< · · · < xNx+

1
2
= 2π and 0 = y 1

2
< · · · < yNy+

1
2
= 2π are spatial

discretization. The mesh sizes are denoted as ∆xi = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ Nx and

∆yj = yj+ 1
2
− yj− 1

2
, 1 ≤ j ≤ Ny, and let h = max

(
max

1≤i≤Nx

∆xi, max
1≤j≤Ny

∆yj

)
. We

assume Ki,j ∈ Ωh is a quasi-uniform partition of Ω with rectangular element K, we

denote Γh as the set of all element interfaces, while Γ0 = Γh\∂Ω. For any e ∈ Γh,

|e| represents the length of the edge e. With respect to this mesh, we define the

discontinuous finite element space as:

W k
h :=

{
v ∈ L2(Ω) : v|Ki,j

∈ Qk(Ki,j),∀Ki,j ∈ Ωh, i ∈ Nx, y ∈ Ny

}
,

where Qk(K)=Pk(Ii)⊗Pk(Jj) is the tensor product of two polynomial spaces, Pk(K)

denotes the piecewise polynomials of degree less than or equal to k in K. We choose

β = (1, 1). Let ne be the unit normal vector of e ∈ Γ0, which is the interior edge

shared by left elements Kℓ and right elements Kr, with β · nℓ > 0 and β · nr < 0,

where nℓ and nr are the unit outer normal corresponding to Kℓ and Kr. Moreover,

we denote ∂Ω+ = {e ∈ ∂Ω : β · n > 0}, with n as the unit outer normal of ∂Ω,

and ∂Ω− = ∂Ω\∂Ω+. Denote v+ = (v|Kℓ
)|e and v− = (v|Kr)|e as two traces for the

functions along edge e and we denote the jump as [v] = v+−v− and {v} = 1
2
(v++v−)

as average of v at the cell interfaces. For the sake of simplicity, for any e ∈ ∂Ω−, we

define v−|e = 0,for any e ∈ ∂Ω+, we define v+|e = 0.
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3.3.2 The semi-discrete OFDG scheme

To construct the OFDG scheme, we rewrite the coupled system (3.1)-(3.3) into the

conservative form:

d(c)
∂p

∂t
+∇ · u = q, (3.1)

a(c)u = −∇p, (3.2)

ϕ
∂c

∂t
+∇ · (uc)−∇ · (D∇c) = c̃q − ϕcz1pt, (3.3)

where a(c) = µ(c)
κ(x,y)

, q as the external volumetric flow rate. We will use r = ϕc instead

of c. Denote p, u, c as the numerical approximations. The OFDG scheme is to find

(p, r, u) ∈ W k
h × W k

h × Wk
h, such that the following variation forms hold for any

(ξ, ζ, η) ∈ W k
h ×W k

h ×Wk
h,

(d̃(r)pt, ξ) = P(u, ξ) + (q, ξ), (3.4)

(a(c)u,η) = K(p,η), (3.5)

(rt, ζ) = Lc(u, c, ζ) + Ld(u, c, ζ) + LOF (c, ζ) + (c̃q − rz1pt, ζ), (3.6)
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where c = P1

(
r
Φ

)
, d̃(r) = z1r + z2(Φ− r), (u, v) =

∫
Ω
uvdxdy, and

P(u, ξ) = (u,∇ξ) +
∑
e∈Γ0

∫
e

û · ne[ξ]ds, (3.7)

K(p,η) = (p,∇ · η) +
∑
e∈Γ

∫
e

p̂[η · ne]ds, (3.8)

Lc(u, c, ζ) = (uc,∇ζ) +
∑
e∈Γ0

∫
e

ûc · ne[ζ]ds, (3.9)

Ld(u, c, ζ) = −(D(u)∇c,∇ζ)

−
∑
e∈Γ0

∫
e

{D(u)∇c · ne}[ζ]ds

−
∑
e∈Γ0

∫
e

(
{D(u)∇ζ · ne}[c] +

α̃

|e|
[c][ζ]

)
ds, (3.10)

LOF (c, ζ) = −
k∑

ℓ=0

σℓ
Ki,j

(c)

hKi,j

∫
Ki,j

(
c− P ℓ−1

h c
)
ζdx, (3.11)

In (2.7)-(2.9), p̂, û, and ûc are the numerical fluxes on the element interfaces. For

the diffusion terms, for any e ∈ Γ0,we use alternating fluxes,

p̂|e = p−|e, û|e = u+|e, (3.12)

and on ∂Ω, we use

p̂|e = p−|e, ∀e ∈ ∂Ω+, p̂|e = p+|e, ∀e ∈ ∂Ω−. (3.13)
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For the convection term, for any e ∈ Γ0, we take the Lax-Friedriches flux as follow

ûc =
1

2
(u+c+ + u−c−)− α[c]ne, (3.14)

where α and α̃ are two positive constants and called internal penalty.

In oscillation-free damping term (3.11), P ℓ−1
h is the standard L2 projection into

W ℓ−1
h , l ≥ 0, that is for any function w, P ℓ

hw ∈ W ℓ
h satisfies

∫
Ki,j

(
P l
hw − w

)
vhdx = 0 ∀vh ∈ Ql (Ki,j) . (3.15)

We also define P−1
h = P 0

h . σ
ℓ
Ki,j

needs to be chosen carefully since they are small in a

smooth region and will be large near discontinuities. In this paper, they are given as

follows:

σℓ
Ki,j

(c) =
2(2ℓ+ 1)

(2k − 1)

hℓ

ℓ!

∑
|α|=ℓ

 1

Ne

∑
v∈Ki,j

([∂αc]|v)2
 1

2

. (3.16)

Here we only consider the jump of c on the vertex v of two adjacent cells which are

shared with edge. Ne is number of vertices of Ki,j. The vector α = (α1, . . . , αd) is

the multi-index of order

|α| = α1 + · · ·+ αd,

and ∂αw is defined as

∂αw =
∂|α|w

∂xα1
1 · · · ∂xαd

d

= ∂α1
x1

· · · ∂αd
xd
w.
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[w]|v denotes the jump of the function w on the vertex v and we can exclusively

calculate the jump between element e and its adjoining neighbors. For more details,

see [56].

3.4 The IMPEC time integration

In this section, we will discretize in time using IMPEC methods based on the implicit-

explicit Runge-Kutta(IMEX-RK) time discretization approach in [58]. First, we in-

troduce the IMEX-RK formulation: An s-stage IMEX-RK scheme can be represented

by the following double Butcher tableau:

c̃ Ã

b̃T

c A

bT
(3.1)

where Ã, A ∈ Rs×s, c̃, c, b̃, b ∈ Rs. Matrix Ã = (ãij) represents an lower triangular ex-

plicit matrix with zero elements on the main diagonal. Matrix A = (aij) is diagonally

implicit matrices with aij = 0, for j > i. Then we consider the ordinary differential

equations as follow:

pt = f(p, r), (3.2)
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rt = g(p, r, pt), (3.3)

where the dependent variables are p and r. f(p, r) represents the right-hand side of

the pressure equation. g(p, r, pt) corresponds to that in the concentration equation.

They can be written as

f(p, r) = d−1(r)(∇ · (a−1(r)∇p) + q), (3.4)

g(p, r, pt) = −∇ · (uc) +∇ · (D(u)∇c) + c̃q − rz1pt. (3.5)

We explicitly treat r (using subscript “E”) and implicitly treat p (using subscript

“I”). The algorithm from time level n to time level n+ 1 is given as: For i = 1 to s

• Compute the internal stages:

r
(i)
E = rn +∆tãij

i−1∑
j=1

(
−∇ · (u(j)

I c
(j)
E )−∇ · (D(uj

I)∇c
(j)
E )
)

+ãij

i−1∑
j=1

(
c̃
(j)
E q

(j)
I − rjIz1p

(j)
t

)
, (3.6)
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p(i)∗ = pn +∆tai,j

i−1∑
j=1

(
d−1(r

(j)
E )(∇ · (a−1(c

(j)
E )∇p

(j)
I ) + q

(j)
I )
)
, (3.7)

p(i) = p(i)∗ +∆tai,i

(
d−1(r

(i)
E )(∇ · (a−1(c

(i)
E )∇p

(i)
I ) + q

(i)
I )
)
. (3.8)

• Update the numerical solution:

pn+1 = pn +∆t
s∑

i=1

bi
[
d−1(rE)(∇ · (a−1(rE)∇pI) + qI)

]
, (3.9)

rn+1 = rn +∆t
s∑

i=1

b̃i [−∇ · (uIcE)−∇ · (D(uI)∇cE)]

+∆t
s∑

i=1

b̃i (c̃EqI − rIz1pt) . (3.10)

Here, we provide more detailed and simplified steps as follows by applying the three-

stage IMPEC2 scheme given below to ODE system(3.2)-(3.3)

c̃1 0 0 0

c̃2 ã21 0 0

c̃3 ã31 ã32 0

b̃1 b̃2 b̃3

c1 a11 0 0

c2 a21 a22 0

c3 a31 a32 a33

b1 b2 b3

The five-stage IMPEC3 scheme is straightforward can be obtained following the same
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lines.

r
(1)
E = rn (3.11)

p(1)∗ = pn (3.12)

p
(1)
I = p(1)∗ +∆ta11f(p

(1)
I , r

(1)
E ) (3.13)

p
(1)
t = f(p

(1)
I , r

(1)
E ) (3.14)

r
(2)
E = rn +∆tã21g(p

(1)
I , r

(1)
E , p

(1)
t ) (3.15)

p(2)∗ = pn +∆ta21p
(1)
t (3.16)

p
(2)
I = p(2)∗ +∆ta22f(p

(2)
I , r

(2)
E ) (3.17)

p
(2)
t = f(p

(2)
I , r

(2)
E ) (3.18)

r
(3)
E = cn +∆tã31g(p

(1)
I , r

(1)
E , p

(1)
t ) + ∆tã32g(p

(2)
I , r

(2)
E , p

(2)
t ) (3.19)

p(3)∗ = pn +∆ta31p
(1)
t +∆ta32p

(2)
t (3.20)

p
(3)
I = p(3)∗ +∆ta33f(p

(3)
I , r

(3)
E ) (3.21)

p
(3)
t = f(p

(3)
I , r

(3)
E ) (3.22)

rn+1 = r(n) +∆t

s∑
i=1

b̃ig(p
(i)
I , r

(i)
E , p

(i)
t ) (3.23)

pn+1 = p(n) +∆t

s∑
i=1

bip
(i)
t (3.24)

where pn, rn are numerical approximations of p(tn) and r(tn) with time step-size ∆t
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for n = 0, 1, · · · , NT . Then we can compute pn+1 = p(tn+1), rn+1 = r(tn+1) by the

IMPEC2 scheme. The scheme is second-order accurate and we can obtain the third-

order accuracy by IMPEC3 scheme. In this paper, we mainly use second and third

order Butcher tableaux for IMPEC time marching as follows:

• GSA DIRK(2,2,2) [94]

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

(3.25)

where γ = 1−
√
2
2

and δ = 1− 1
2γ

with order p = 2.

• GSA DIRK(4,4,3) [94]

0 0 0 0 0 0

1/2 1/2 0 0 0 0

2/3 11/18 1/18 0 0 0

1/2 5/6 −5/6 1/2 0 0

1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

0 0 0 0 0 0

1/2 0 1/2 0 0 0

2/3 0 1/6 1/2 0 0

1/2 0 −1/2 1/2 1/2 0

1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2

(3.26)

This method has order p = 3.
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3.5 Numerical experiments

In this section, we provide numerical tests with IPDG-IMPEC scheme with oscillation-

free damping term in two space dimensions to illustrate their accuracy and perfor-

mance for compressible miscible displacements in porous media. We solve (2.1)-(3.3)

with impermeable boundary conditions (2.4). The computational domain is chosen

as Ω = [0, 2π] × [0, 2π]. Unless otherwise stated, we take Nx = Ny = 80, ∆x = 2π
Nx

and ∆y = 2π
Ny

. We also provide the simulation of viscous fingering phenomenon with

some perturbation in the permeability.

Example 3.5.1

We first verify the order of convergence of the two IMPEC approaches by the following

coupled ODE system,

pt = 4p− 10r,

rt = 4p− pt − 6r − 10e−t sin(5t)− 2e−2t cos(5t)(cos(5t) + sin(5t)) + rp.

The corresponding exact solutions are

p(t) = 2e−t cos(5t), r(t) = e−t(cos(5t) + sin(5t)).
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We choose the initial time at t = 0 and the final time at t = 1. The computational

results are listed in Table 3.1 and Table 3.2. We can observe the second-order accuracy

of the IMPEC2 by using Butcher tableaux (3.25) and the third-order accuracy of

IMPEC3 by using Butcher tableaux (3.26).

Table 3.1
Example 3.5.1: Convergence test of p and r for the ODE system with

Butcher tableaux (3.25).

∆t
p r

L2 error order L2 error order
2−6 6.13e-2 - 3.46e-2 -
2−7 1.48e-2 2.08 8.34e-2 2.78
2−8 3.60e-3 2.05 2.06e-3 2.70
2−9 8.99e-4 2.04 5.15e-4 2.57
2−10 2.24e-4 2.00 1.29e-4 2.40

Table 3.2
Example 3.5.1: Convergence test of p and r for the ODE system with

Butcher tableaux (3.26).

∆t
p r

L2 error order L2 error order
2−6 2.20e-3 - 3.46e-4 -
2−7 2.84e-4 2.95 8.34e-5 2.96
2−8 3.58e-5 2.99 2.06e-6 2.98
2−9 4.50e-6 2.99 5.15e-7 2.99
2−10 5.65e-7 3.00 1.29e-8 3.00

Example 3.5.2

We now verify orders of accuracy of the system (2.1)-(2.3) in the 2D case. We take

the initial data as:

c(x, y, 0) =
1

2
(1− cos(x) cos(y)) , p(x, y, 0) = cos(x) cos(y)− 1,
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and choose the source parameters q and c̃ as

q(x, y, t) = 2e−2t,

c̃ =
1

2

(
e−2γt

(
1

2
sin2(x) cos2(y) +

1

2
cos2(x) sin2(y)− cos(x) cos(y)

)
+ 1

)
.

Moreover, we take other parameters as

z1 = z2 = 1, ϕ(x, y) = κ(x, y) = µ(c) = 1, D(u) =

 γ 0

0 γ

 .

The corresponding exact solutions are

c(x, y, t) =
1

2

(
1− e−2γt cos(x) cos(y)

)
, p(x, y, t) = e−2t (cos(x) cos(y)− 1) .

We choose ∆t = 0.04min{∆x, ∆y}, T = 0.1 and γ = 10−5. The computational

results are listed in Table 3.3 and Table 3.4. We can observe second-order accuracy

of the IMPEC2-IPDG methods and third-order accuracy of IMPEC3-IPDG meth-

ods with and without the oscillation-free technique. Therefore, the oscillation-free

technique does not damp the accuracy in two dimensional case.

Example 3.5.3

81



Table 3.3
Example 3.5.2: Accuracy test of c for the IMPEC2-IPDG

schemes with and without the oscillation-free technique with DIRK(2,2,2).

N
With OF-Tech No OF-Tech

L2 error order L2 error order
10 7.08e-2 - 3.46e-2 -
20 1.63e-2 2.16 8.34e-2 2.05
40 4.02e-3 2.02 2.06e-3 2.01
80 1.01e-3 1.99 5.15e-4 2.00
160 2.55e-4 1.99 1.29e-4 2.00

Table 3.4
Example 3.5.2: Accuracy test of c for the IMPEC3-IPDG

schemes with and without the oscillation-free technique with DIRK(4,4,3).

N
With OF-Tech No OF-Tech

L2 error order L2 error order
10 1.58e-2 - 4.13e-3 -
20 2.05e-3 2.94 6.44e-4 2.68
40 2.71e-4 2.91 1.01e-4 2.68
80 3.30e-5 3.03 1.43e-5 2.81
160 4.11e-6 3.00 2.09e-6 2.77
320 5.34e-7 2.94 3.08e-7 2.76

We take the initial conditions as

c(x, y, 0) =


1, x ≤ π

2
, y ≤ π

2
,

0, otherwise,

p(x, y, 0) = cos
(x
2

)
+ cos

(y
2

)
.

Other parameters are choosen as

q(x, y, t) = 0, z1 = 1, z2 = 10, µ(c) = κ(x, y) = ϕ(x, y) = 1, D(u) = 0.

We compute c at terminal time T = 1.0, 5.0 with ∆t = 0.1min{∆x,∆y} and with
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the oscillation-free technique. The results are shown in Fig. 3.1.

(a) c at T=1.0 (b) c at T=5.0

Figure 3.1Example 3.5.3: Concentrations c with oscillation-free technique.

From the figure, we can observe that though the bound-preserving technique is miss-

ing, the numerical approximations are between 0 and 1. To test the effectiveness of

the oscillation-free technique for two dimensional case, we simulate the distributions

of c at different time T = 1.0, 5.0 without oscillation-free technique. The results are

given in Fig. 3.2. We can observe that there are some concentration value beyond

the lower bound 0 and the upper bound 1.

We also provide simulation of the distributions of c at different time T = 1.0 and

15.0, along the diagonal y = x with and without oscillation-free damping term. The

results are given in Fig. 3.3. We can observe strong oscillations and physically

irrelevant values with overshoot in Fig. 3.3 (b) and undershoot in Fig. 3.3(d), while

concentrations c in Fig. 3.3(a) and Fig. 3.3(c) do not, indicating the effectiveness of

the oscillation-free technique.
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(a) c at T=1.0 (b) c at T=5.0

Figure 3.2Example 3.5.3: Concentration c without oscillation-free tech-
nique.

Example 3.5.4

We choose the initial conditions as

c(x, y, 0) = 0.5, p(x, y, 0) = 0.

Other parameters are taken as

z1 = 0.4, z2 = 0.6, ϕ(x, y) = 1, D(u) = 0.1

 |u| 0

0 |u|

 .

The injection well is positioned at the upper-right corner of the domain with q = 1
∆x∆y

and c̃ = 1, and production well is positioned at lower-left corner with q = − 1
∆x∆y

.

In this example, the diffusion parameter in the concentration equation is set to be
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(d) T=15.0 without oscillation-free

Figure 3.3Example 3.5.3: Concentration c with and without oscillation-free
technique along the diagonal y = x.

more practical. We choose ∆t = 0.005min{∆x,∆y}, Nx = Ny = 40 and terminal

time T = 1, 5, 10, 15. The simulations are shown in Fig. 3.4. We can see that all the

numerical approximations of c are in the desired bound between 0 and 1. Therefore,

the oscillation-free technique works for the petroleum production simulations.

Example 3.5.5
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(a) c at T=1 (b) c at T=5

(c) c at T=10 (d) c at T=15

Figure 3.4Example 3.5.4: Concentration c at different time with IMPEC3-
OFDG.

We choose the initial conditions as

c(x, y, 0) = 0, p(x, y, 0) = 0.

Other parameters are taken as

z1 = 0.001, z2 = 0.001, ϕ(x, y) = 1, D(u) = 0.01

 |u| 0

0 |u|

 .
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Permeability and viscosity are

κ(x, y) = 1 + 10−2 cos(10πx) cos(10πy), µ(c) = e6(1−c).

There is a perturbation of the permeability to create the onset of the fingers. The

injection well is positioned at the upper-right corner of the domain with q = 1
∆x∆y

and

c̃ = 1, and production well is positioned at lower-left corner with q = − 1
∆x∆y

. We set

∆t = 0.005min{∆x,∆y} and terminal time T = 1, 5, 9. The simulations by using

IMPEC3 and under the coarse mesh Nx = Ny = 80 and refined mesh Nx = Ny = 100

are shown in Fig. 3.5. Comparing the coarse mesh with the refined mesh, we observe

that the fingering pattern maintains a similar shape at corresponding spots in both

meshes. This indicates that the grid sensitivity is effectively managed through the

use of the IMPEC3-OFDG method.

Example 3.5.6

Based on 3.5.5, we choose the permeability

κ(x, y) = 1 + 10−2 cos(50πx) cos(50πy)

to generate more fingerings with refined mesh Nx = Ny = 100 and terminal time

T = 1, 4, 8, 11. The simulations using the IMPEC2 method with Q1 polynomials
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and IMPEC3 method with Q2 polynomials are depicted in Figs. 3.6 and 3.7, re-

spectively. We observe the smooth generation of viscous fingering over time, with all

concentration values remaining within the physically relevant range of 0 to 1, exhibit-

ing minimal overshoot and undershoot. Fig. 3.6 shows four fingers, while Fig. 3.7

shows six fingers. This comparison illustrates the numerical artifacts in simulating

viscous fingering. The high order numerical methods produce more accurate simula-

tions with detailed fingerings. Therefore, high order methods are preferable to reduce

the numerical artifacts.

We also provide simulations of the viscous fingering phenomenon with an obstacle

in Fig. 3.9. The obstacle problem setup is described in Fig. 3.8. The obstacle

is an impermeable area with yellow rocks at the lower-right part of the region in

Fig. 3.8. In the surrounding matrix, the permeability is defined as κ(x, y) = 1 +

10−2 cos(50πx) cos(50πy), viscosity depends on the concentration is µ(c) = e6(1−c),

the porosity ϕ = 1, and the parameters of the diffusion-dispersion are given

dmol = 2.55× 10−9, dlong = dtran = 0.

The mobility ratio (the ratio = viscosity of residing fluid/viscosity of the solvent) is 20.

The injection well is positioned at the upper-right corner of the domain with q = 1
∆x∆y

and c̃ = 1, and production well is positioned at lower-left corner with q = − 1
∆x∆y

.

The viscous fingers are generated by randomly perturbing the permeability. The
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simulation is performed using a 100 × 100 grid with Q2 polynomials. Snapshots at

t = 1, 5, 10, 11 of concentration contours are shown in Fig. 3.9. We observe in Fig. 3.9

that the estimated smooth growth of the fingering over time with physically relevant

values in the desired bound, and the flow path does not pass the obstacle.

3.6 Concluding remarks

In this paper, we presented the OFDG methods for simulating two-component com-

pressible displacements in porous media with IMPEC time discretization. By in-

corporating the oscillation-free damping term in two space dimensions, we achieved

physically relevant numerical approximations. The use of the IMPEC time march-

ing method ensures the maintenance of high-order accuracy. Numerical experiments

demonstrated the effectiveness of the oscillation-free technique in simulating viscous

fingering instability phenomena with obstacles. Our proposed high-order numerical

scheme significantly reduces the sensitivity of mesh orientation, highlighting its effi-

ciency. Additionally, we provided a comparison of numerical tests between the lower

order and higher order methods to demonstrate the necessity of the higher order

scheme.
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(a) c at T=1 (b) c at T=1

(c) c at T=5 (d) c at T=5

(e) c at T=9 (f) c at T=9

Figure 3.5Example 3.5.5: Concentration c of viscous fingering phenomenon
with IMPEC3-OFDG in Q2 under the coarse mesh(Left) and refined
mesh(Right).
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(a) c at T=1 (b) c at T=4

(c) c at T=8 (d) c at T=11

Figure 3.6Example 3.5.6: Concentration c with IMPEC2-OFDG in Q1.
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(a) c at T=1 (b) c at T=4

(c) c at T=8 (d) c at T=11

Figure 3.7Example 3.5.6:Concentration c of with IMPEC3-OFDG in Q2.
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Figure 3.8Obstacle problem setup
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(a) c at T=1 (b) c at T=5

(c) c at T=10 (d) c at T=11

Figure 3.9Example 3.5.6: Concentration c of Viscous Fingering phe-
nomenon at different time with oscillation-free technique with obstacle.
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Chapter 4

Conclusion

This dissertation has explored the application of discontinuous Galerkin (DG) meth-

ods to the system of compressible miscible displacements, particularly in the context

of modeling surfactant flooding in enhanced oil recovery (EOR) techniques. While

DG methods are generally effective in simulating most problems in miscible displace-

ments, they can encounter issues, such as oscillations in numerical results, particularly

in tricky problem settings, leading to nonphysical numerical approximations.

To address these challenges, this work first introduced a bound-preserving Discon-

tinuous Galerkin method with Second-order Implicit Pressure Explicit Concentration

(SIPEC) time marching method. This approach was used to compute the system of

two-component compressible miscible displacements in porous media.
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Moreover, to efficiently simulate viscous fingering phenomena, a higher-order dis-

continuous Galerkin method for the coupled nonlinear system of compressible mis-

cible displacements was proposed. This method adopted the Implicit Pressure Ex-

plicit Concentration time marching approach (IMPEC) based on the implicit-explicit

Runge-Kutta (IMEX-RK) Butcher tableau to achieve high-order temporal accuracy

while ensuring stability. Furthermore, we introduced an oscillation-free damping term

to suppress spurious oscillations near the discontinuity in high-order DG methods.

Numerical experiments showed that the incorporation of bound-preserving DG

method with SIPEC time marching and high-order OFDG with IMPEC time march-

ing yielded satisfactory results for simulating fluid flow in reservoirs. Overall, the

research in this dissertation contributes to the advancement of numerical methods for

simulating complex fluid flow phenomena in porous media, particularly in the context

of EOR applications.
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