
The discontinuous Galerkin method
for free surface and subsurface flows

in geophysical applications

Das unstetige Galerkinverfahren für Strömungen
mit freier Oberfläche und im Grundwasserbereich

in geophysikalischen Anwendungen

Der Naturwissenschaftlichen Fakultät

der
Friedrich-Alexander-Universität

Erlangen-Nürnberg

zur
Erlangung des Doktorgrades Dr. rer. nat

vorgelegt von

Balthasar Reuter

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS FAU - Online-Publikationssystem der Friedrich-Alexander-Universität...

https://core.ac.uk/display/286435978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 6. Dezember 2019

Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer

Gutachter/in: Prof. Dr. Peter Knabner
Prof. Dr. Clint Dawson

Contents

Danksagung (German) v

Zusammenfassung (German) vii

Preface xiii

A Extended summary 1

1 Introduction 3
1.1 Motivation . 3
1.2 Structure of this extended summary . 4
1.3 Notation . 4

2 Mathematical models 5
2.1 Three-dimensional baroclinic shallow-water flow 5
2.2 Groundwater flow . 9
2.3 Coupled model . 11

3 The discontinuous Galerkin method 13
3.1 Types of discontinuous Galerkin methods 13
3.2 Notation and basic definitions . 15
3.3 LDG discretization for three-dimensional shallow-water flow 16
3.4 LDG discretization of saturated groundwater flow 22
3.5 Coupled model . 24
3.6 Slope limiting . 25
3.7 Locally filtered transport . 29

4 High performance computing aspects 31
4.1 Computing architectures . 31
4.2 Node-level performance . 33
4.3 Parallelization and scalability . 35
4.4 Energy efficiency . 38

5 Implementation aspects and software packages 41
5.1 FESTUNG . 41
5.2 UTBEST3D . 43

6 Summary and outlook 45

Contents

Bibliography 47

B Reprints of published journal articles 61

1 FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin
method, Part I: Diffusion operator 63

2 A multi-platform scaling study for an OpenMP parallelization of a discontinuous
Galerkin ocean model 65

3 FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin
method, Part II: Advection operator and slope limiting 67

4 Energy efficiency of the simulation of three-dimensional coastal ocean circula-
tion on modern commodity and mobile processors 69

5 Anisotropic slope limiting for discontinuous Galerkin methods 71

6 FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin
method, Part III: Hybridized discontinuous Galerkin (HDG) formulation 73

7 Locally Filtered Transport for computational efficiency in multi-component
advection-reaction models 75

8 Discontinuous Galerkin method for coupling hydrostatic free surface flows to
saturated subsurface systems 77

iv

Danksagung

Die vorliegende Arbeit und die darin enthaltenen Publikationen sind das Ergebnis meiner
mehr als als fünf Jahre dauernden Beschäftigung am Lehrstuhl für Angewandte Mathe-
matik I. Ich möchte den Personen, die mich in dieser Zeit begleitet, inspiriert und unterstützt
haben, an dieser Stelle aufrichtig danken.

Mein größter Dank gilt Herrn Prof. Dr. Vadym Aizinger, der nicht offiziell als Betreuer
dieser Arbeit fungieren durfte, diese Aufgabe in der Praxis aber vollumfänglich übernommen
hat. Er war es, der mir während eines Kompaktkurses in Stockholm einen ersten Einblick in
unstetige Galerkinverfahren gab und mich schließlich eingeladen hat, nach Erlangen zurück
zu kehren. Als Betreuer gab Vadym stets die Richtung vor, gewährte viel Freiheit in der
Umsetzung und war offen für interessante Ideen und Fragestellungen, was mir erst die
Vielfalt der in dieser Arbeit behandelten Themen ermöglichte. Mit seiner großen Expertise,
seiner Bereitschaft, jederzeit Fragen oder Probleme zu diskutieren, und seiner Gabe, ad hoc
immer eine Lösungsidee oder einen Ansatz zu entwickeln, war das gemeinsame Arbeiten stets
eine Freude, lehrreich und fruchtbar. Als Ansprechpartner war er nicht nur für fachliche
Fragen sondern auch weit darüber hinaus immer verfügbar und bot Rat und Unterstützung
bei jeder Gelegenheit. Für all das bin ich Vadym zutiefst dankbar und wünsche ihm und
seiner Familie für den Start in Bayreuth nur das Beste.

Ebenso gilt mein Dank Herrn Prof. Dr. Peter Knabner für die Bereitschaft, die offizielle
Rolle als Betreuer dieser Arbeit zu übernehmen. Ich danke ihm für die wertvollen fach-
lichen Impulse und Anregungen, für die Aufnahme in seinen Lehrstuhl und nicht zuletzt
dafür, dass er stets für die Möglichkeit einer Weiterbeschäftigung gesorgt hat und mir so
viele Sorgen abgenommen hat. Bedanken möchte ich mich auch für das in mich gesetzte
Vertrauen durch die Beteiligung am Buchprojekt Mit Mathe richtig anfangen – die Arbeit
daran, zusammen auch mit Herrn Dr. Raphael Schulz, zeigte mir einige neue Aspekte auf
und ich empfand sie als rundum unterhaltsam und wertvoll. Ein gewisser Kinderreichtum
im Kollegenkreis, letztendlich auch durch meinen eigenen Nachwuchs, prägte meine Zeit am
Lehrstuhl, und die Toleranz und Flexibilität von Herrn Knabner gegenüber den dadurch
enstandenen kurzfristigen Ausfällen oder notwendig gewordener Zwischenbetreuung am Ar-
beitsplatz ist bemerkenswert und verdient besonderen Dank.

Bedanken möchte ich mich bei allen Mitautoren der Zeitschriftenbeiträge für die inter-
essante und gute Zusammenarbeit, ergiebige fachliche Diskussionen und den stets freund-
schaftlichen und herzlichen Umgang miteinander. Hervorheben möchte ich Herrn Prof. Dr.
Florian Frank, von dem die Idee für das Softwarepaket FESTUNG ausging und der mit
seiner gründlichen und fundierten Arbeitsweise jede Softwareversion und Publikation erst
perfektionierte. Erwähnen möchte ich auch Herrn Dr. Andreas Rupp, dessen beeindruck-
endes Wissen und aufopfernde Hilfsbereitschaft ich viel zu oft in Anspruch nehmen musste.
Florian und Andreas, sowie meinen ehemaligen Kommilitonen Dominik Ernst, Julian Ham-

Danksagung (German)

mer, Dr. Christoph Rachinger und Dominik Thönnes danke ich auch für das kritische Lesen
des Manuskripts und die hilfreichen Anmerkungen.

Meinen weiteren aktuellen und ehemaligen Kollegen am AM1, Prof. Dr. Fabian Brunner,
Tobias Elbinger, Dr. Markus Gahn, Hennes Hajduk, Dr. Matthias Herz, Dr. Fabian Kling-
beil, Prof. Dr. Serge Kräutle, Dr. Stefan Metzger, PD Dr. Maria Neuss-Radu, Dr. Nadja
Ray, Dr. Stefan Schiessl, Dr. Raphael Schulz, Oliver Sieber, Dr. Daniel Tenbrinck, Dr. Philipp
Wacker, Patrick Weiss, Philipp Werner und meinem Bürokollegen Hubertus Grillmeier
danke ich für das freundschaftliche Arbeitsklima sowie unterhaltsame Diskussionen über
fachliche Themen und darüber hinaus. Besonderer Dank gilt Herrn Dr. Alexander Prechtel,
der, über seine eigentlichen Aufgaben hinaus, als Organisator und Mediator des Lehrstuhls
stets als Ansprechpartner zur Verfügung stand. Mit vielen verbindet mich auch über den
Arbeitsalltag hinaus eine freundschaftliche Beziehung. Für die Bewältigung aller bürokratis-
chen Hürden und Probleme danke ich den Mitarbeitern des Sekretariats, Frau Astrid Bigott,
Frau Monika Bittan, Herrn Sebastian Czop, Frau Gisela Jukl, Frau Juliett Kille und Frau
Cornelia Weber. Erwähnen möchte ich auch Herrn Prof. Dr. Eberhard Bänsch und die
Mitarbeiter seines Lehrstuhls AM3, deren Türen immer offen standen, sowohl für fachliche
Fragen als auch eine gemütliche Kaffeerunde.

Abschließend will ich meiner Familie danken: Meinen Eltern dafür, dass sie mich seit
jeher unterstützt, gefördert und ermunter haben, das zu tun, was mir Freude bereitet. Vor
allem jedoch meiner Frau, Stefanie, und meinen Töchtern, Lorena und Jana, denen ich für
ihre Unterstützung nicht genug danken kann. Sie mussten viel Geduld und Verständnis auf-
bringen, wenn sie wegen langer Arbeitstage oder Dienstreisen auf mich verzichten mussten,
und sie konnten mich, wie nichts sonst, von Frust oder Erschöpfung ablenken, und sich mit
mir über Erfolge freuen. Ganz besonders freue ich mich, dass sie bereit sind, auch weitere
Abenteuer und Neuanfänge mit mir zu unternehmen.

Balthasar Reuter, im Mai 2019

vi

Titel, Zusammenfassung und
Aufbau der Arbeit

Das unstetige Galerkinverfahren für Strömungen
mit freier Oberfläche und im Grundwasserbereich

in geophysikalischen Anwendungen

Die vorliegende Arbeit beschäftigt sich mit der mathematischen Modellierung und numeri-
schen Simulation von Strömungen in geophysikalischen Anwendungen mit freier Oberfläche
und im gesättigten Grundwasserbereich, sowie deren Kopplung. Der Fokus der Arbeit liegt
auf der Anwendung unstetiger Galerkinverfahren (discontinuous Galerkin, dG) zur Dis-
kretisierung der mathematischen Modelle und deren effiziente Umsetzung auf modernen
Parallelrechnerarchitekturen.

Die Bandbreite an geophysikalischen Anwendungen für Strömungen mit freier Oberfläche
reicht von kleinen Seen über Flüsse und Ästuare bis hin zu regionalen Ozean- und globa-
len Zirkulationsmodellen. Die Tatsache, dass in solchen Situationen die vertikale Ausdeh-
nung wesentlich geringer ist als die horizontale Größe des betrachteten Gebiets, motiviert
die Verwendung der dreidimensionalen Flachwassergleichungen als mathematisches Modell.
Dieses lässt sich unter Verwendung der hydrostatischen Annahme und der Boussinesq-
Approximation aus den Navier-Stokes-Gleichungen herleiten. Die numerische Simulation
von Strömungen mit freier Oberfläche ist wichtig für eine Vielzahl von Anwendungen, z. B.
Umweltstudien, Tsunami- und Sturmwarnsysteme oder als Teil gekoppelter Simulationen
in Klimaprojektionen.

Unter der Erdoberfläche fließt Wasser (oder andere Fluide) in wasserdurchlässigen Schich-
ten bestehend aus porösen Materialien (z. B. Kalkstein, Sand oder Kies), angetrieben von
Gradienten in der potentiellen Energie (Standrohrspiegelhöhe). Die vorliegende Arbeit ist
auf gesättigte Situationen beschränkt, in denen der gesamte zusammenhängende Poren-
raum mit Wasser ausgefüllt ist. Wie allgemein üblich wird ein gemitteltes Modell basierend
auf dem Darcy-Gesetz verwendet, um das Auflösen der Geometrie der Porenmatrix zu ver-
meiden. Die Simulation solcher Grundwasserszenarien wird beispielwseise verwendet, um
Folgenabschätzungen für Trinkwasserbrunnen zu erstellen oder die Ausbreitung von Schad-
stoffen im Untergrund nachzuvollziehen.

Wenn die Interaktion von Gewässern mit einem darunter liegenden Grundwassersystem
untersucht werden soll, erfordert dies gekoppelte Modelle. Dies ermöglicht z. B. die Simula-
tion des Einsickerns von Hochwasser in den Untergrund oder der Ausbreitung von Schad-

Zusammenfassung (German)

stoffen zwischen Oberflächengewässern und Grundwasserleitern. In der vorliegenden Arbeit
werden dazu getrennte Modelle für jedes der beiden Teilgebiete betrachtet und diese an
einer scharfen Grenze zwischen den Gebieten mittels geeigneter Bedingungen gekoppelt, die
Massenerhaltung und Stetigkeit des Drucks sicher stellen.

Die zugrunde liegenden mathematischen Modelle werden als Erhaltungssätze formuliert
und bestehen aus Systemen partieller Differentialgleichungen. Um diese numerisch lösen zu
können, werden diese in Ort und Zeit diskretisiert, wobei für die Ortsdiskretisierung aus-
schließlich unstetige Galerkinverfahren eingesetzt werden. Diese relativ junge Familie von
Diskretisierungsverfahren bietet eine Reihe von Vorteilen, leidet aber unter dem Nachteil
einer großen Anzahl lokaler Freiheitsgrade, was einen hohen Rechenaufwand im Vergleich
zu anderen etablierten Verfahren nach sich zieht. Eine effiziente Implementierung und Aus-
nutzung moderner Parallelrechner ist daher besonders wichtig, um die Rechenzeit in einem
vertretbaren Rahmen zu halten.

Unstetige Galerkinverfahren nutzen den in Finite Elemente-Verfahren üblichen Ansatz
einer schwachen Formulierung, unterscheiden sich aber dadurch, dass sie Ansatz- und Test-
funktionen aus Räumen verwenden, die keine Stetigkeitsbedingung über Elementgrenzen
hinweg fordern. Die dadurch ebenfalls unstetige Lösung wird zwischen benachbarten Ele-
menten nur über numerische Flüsse gekoppelt, was eine Ähnlichkeit zu Finite Volumen-
Verfahren darstellt. Im Rahmen dieser Arbeit findet insbesondere die local discontinuous
Galerkin-Methode (LDG) Anwendung, in der gemischte Formulierungen verwendet wer-
den, um Differentialoperatoren zweiter (oder höherer) Ordnung als Systeme erster Ordnung
darzustellen, bevor diese mit dem Galerkinansatz behandelt werden. Neben den primären
Unbekannten erhält man so auch deren Flüsse als Hilfsunbekannte. Sowohl das System der
dreidimensionalen Flachwassergleichungen als auch die Grundwassergleichung werden mit
LDG diskretisiert und die Stabilität des diskreten gekoppelten Systems bewiesen.

Um nichtphysikalische Oszillationen und Verletzungen diskreter Maximumsprinzipien in
dG-Lösungen zu vermeiden, werden in dieser Arbeit knotenbasierte Steigungsbegrenzer (slo-
pe limiter) verwendet. Diese Nutzen im Zusammenspiel mit TVD-Zeitschrittverfahren (total
variation diminishing) die Tatsache, dass für den stückweise konstanten Teil der Lösung
die Monotonität garantiert ist. Für einen bestimmten Knoten lassen sich dann aus den
stückweise konstanten Teilen der Lösung auf allen Elementen, zu denen dieser Knoten
gehört, obere und untere Schranken für die Lösung in diesem Punkt ermitteln. Die Steigung
der Lösung wird anschließend elementweise so begrenzt, dass diese Schranken in allen Kno-
ten des jeweiligen Elements eingehalten werden, ohne dabei die Massenerhaltung innerhalb
des Elements zu verletzen. Die vorliegende Arbeit liefert eine geschlossene Formulierung für
knotenbasierte Steigungsbegrenzer beliebiger Ordnung und enthält einen Vorschlag für eine
striktere Limitierungstechnik sowie einen anisotropen Steigungsbegrenzer. Zusätzlich wird
ein recheneffizientes und weiterhin massenerhaltendes Transportschema beschrieben, das
Vorteile für Transportszenarien bietet, in denen sich die Lösung nur in einem kleinen Teil
des Gebietes ändert. Dazu werden die Maximums- und Minimumsinformationen verwendet,
die im Rahmen des Limitierungsalgorithmus ohnehin ermittelt werden, um die Berechnung
der numerischen Flüsse nur auf den Elementen durchzuführen, auf denen eine Änderung
der Lösung erwartet wird. Folglich wird das Schema als lokal gefilterter Transport (locally
filtered transport, LFT) bezeichnet.

Viele geophysikalische Anwendungen für Strömungen mit freier Oberfläche oder im Grund-
wasserbereich zeichnen sich durch große Rechengebiete und lange Simulationszeiträume aus,
sodass die numerische Simulation mit erheblichem Rechenaufwand verbunden ist. Um den

viii

Zeitaufwand für Simulationen auch bei hohen Anforderungen an die örtliche Auflösung
möglichst gering zu halten, wird auf Parallelrechner und Technologien des Hochleistungs-
rechnen (high performance computing, HPC) zurückgegriffen. Zu den Vorteilen der LDG-
Methode zählt insbesondere die Abwesenheit einer globalen Kopplung der Freiheitsgrade,
wodurch sich das Verfahren besonders gut für paralleles Rechnen eignet und hervorragende
Skalierbarkeit zeigt.

Gleichzeitig spielt für HPC-Systeme und -Anwendungen die Energieeffizienz der Hardware
und Applikationen eine zunehmende Rolle. Gerade die gute Skalierbarkeit von dG-Verfahren
kann hier einen Beitrag leisten: Der Einsatz von Prozessorarchitekturen aus dem Niedrig-
energiebereich verspricht eine geringere Leistungsaufnahme und einen reduzierten Gesamt-
energiebedarf für die Berechnung. Damit einher geht allerdings die vergleichsweise geringe
Rechenleistung solcher Prozessoren, die wieder eine verlängerte Rechenzeit zur Folge hat. In
einer Vergleichsstudie zwischen aktuellen Intel Haswell-Prozessoren sowie ARM-Prozessoren
für das regionale Ozeanmodell UTBEST3D wird gezeigt, dass dessen gute Skalierbarkeit den
Einsatz von einer größeren Zahl von Niedrigenergieprozessoren erlaubt, um schließlich einen
geringeren Energiebedarf bei gleichbleibender Rechenzeit zu erzielen.

Die praktische Umsetzung dieser Verfahren erfolgte in zwei Software-Paketen: Der Au-
tor dieser Arbeit entwickelt gemeinsam mit Florian Frank und Vadym Aizinger FESTUNG
(Finite Element Simulation Toolbox for UNstructured Grids), eine neue MATLAB / GNU
Octave Toolbox für die effiziente Nutzung und Entwicklung unstetiger Galerkin-Verfahren.
Durch den konsequenten Einsatz vektorisierter Operationen liefert diese gute Recheneffizi-
enz für kleine und mittlere Problemgrößen und eignet sich besonders als Rapid Prototyping-
Werkzeug und für den Einsatz in der Lehre. Klare Schnittstellen und eine umfangreiche
Dokumentation erleichtern dabei den Umgang mit diesem Softwarepaket. In einer Reihe
von Veröffentlichungen ist die Diskretisierung und Implementierung von dG-Verfahren in
dieser Toolbox für verschiedene Operatoren beschrieben.

Das regionale Ozeanmodell UTBEST3D nutzt die LDG-Methode für das System der
dreidimensionalen Flachwassergleichungen. Das Modell ist in C++ implementiert und unter
Verwendung von MPI und OpenMP parallelisiert. Im Rahmen dieser Arbeit wurde die
OpenMP-Parallelisierung neu hinzugefügt und Verbesserungen der Recheneffizienz sowie
der Skalierbarkeit vorgenommen. Darüber hinaus wurde die Portierbarkeit auf eine Reihe
von unterschiedlichen Architekturen untersucht.

Aufbau der Arbeit
Die vorliegende Arbeit besteht aus zwei Teilen: eine Reihe begutachteter und bereits pu-
blizierter Zeitschriftenbeiträge, sowie eine erweiterte Zusammenfassung, die diese Schriften
miteinander verknüpft und in einen größeren fachwissenschaftlichen Kontext einbettet.

Den ersten Teil bildet die erweiterte Zusammenfassung bestehend aus sechs Kapiteln.
Nach einer allgemeinen Einführung in das Anwendungsgebiet in Kapitel 1, werden in Kapi-
tel 2 kompakt die mathematischen Modelle für Strömungen mit freier Oberfläche, im Grund-
wasserbereich und deren Kopplung beschrieben. Ein Überblick über die Geschichte und
Varianten unstetiger Galerkinverfahren, sowie die Diskretisierung der zuvor eingeführten
Modelle findet sich in Kapitel 3. Ebenfalls in diesem Kapitel werden Steigungsbegrenzer
und das lokal gefilterte Transportschema beschrieben. Kapitel 4 liefert eine Einführung in
aktuelle Rechenarchitekturen, beschreibt Metriken und Maßnahmen für effizientes Rechnen

ix

Zusammenfassung (German)

auf der Ebene einzelner Rechenknoten und Aspekte der Parallelisierung und Skalierbar-
keit. Abgeschlossen wird dieses Kapitel durch Energieeffizienz-Betrachtungen. Eine kurze
Beschreibung der entwickelten Softwarepakete findet sich in Kapitel 5 und eine Zusammen-
fassung sowie ein Ausblick in Kapitel 6 runden den ersten Teil ab.

Den zweiten Teil der Arbeit bilden Nachdrucke von acht bereits begutachteten und pu-
blizierten Zeitschriftenbeiträgen, die im folgenden Abschnitt genannt werden.

Publizierte Zeitschriftenbeiträge
[P1] F. Frank, B. Reuter, V. Aizinger und P. Knabner. “FESTUNG: A MATLAB/GNU

Octave toolbox for the discontinuous Galerkin method, Part I: Diffusion operator”.
In: Computers and Mathematics with Applications 70.1 (2015), S. 11–46. doi: 10.
1016/j.camwa.2015.04.013.

[P2] B. Reuter, V. Aizinger und H. Köstler. “A multi-platform scaling study for an
OpenMP parallelization of a discontinuous Galerkin ocean model”. In: Computers
& Fluids 117 (2015), S. 325–335. doi: 10.1016/j.compfluid.2015.05.020.

[P3] B. Reuter, V. Aizinger, M. Wieland, F. Frank und P. Knabner. “FESTUNG: A
MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, Part II:
Advection operator and slope limiting”. In: Computers and Mathematics with App-
lications 72.7 (2016), S. 1896–1925. doi: 10.1016/j.camwa.2016.08.006.

[P4] M. Geveler, B. Reuter, V. Aizinger, D. Göddeke und S. Turek. “Energy efficiency of
the simulation of three-dimensional coastal ocean circulation on modern commodity
and mobile processors”. In: Computer Science – Research and Development 31.4
(2016), S. 225–234. doi: 10.1007/s00450-016-0324-5.

[P5] V. Aizinger, A. Kośık, D. Kuzmin und B. Reuter. “Anisotropic slope limiting for
discontinuous Galerkin methods”. In: International Journal for Numerical Methods
in Fluids 84.9 (2017), S. 543–565. doi: 10.1002/fld.4360.

[P6] A. Jaust, B. Reuter, V. Aizinger, J. Schütz und P. Knabner. “FESTUNG: A MAT-
LAB/GNU Octave toolbox for the discontinuous Galerkin method, Part III: Hybri-
dized discontinuous Galerkin (HDG) formulation”. In: Computers and Mathematics
with Applications 75.12 (2018), S. 4505–4533. doi: 10.1016/j.camwa.2018.03.045.

[P7] H. Hajduk, B. R. Hodges, V. Aizinger und B. Reuter. “Locally Filtered Transport for
computational efficiency in multi-component advection-reaction models”. In: Envi-
ronmental Modelling & Software 102 (2018), S. 185–198. doi: 10.1016/j.envsoft.
2018.01.003.

[P8] B. Reuter, A. Rupp, V. Aizinger und P. Knabner. “Discontinuous Galerkin method
for coupling hydrostatic free surface flows to saturated subsurface systems”. In:
Computers and Mathematics with Applications 77.9 (2019), S. 2291–2309. doi: 10.
1016/j.camwa.2018.12.020.

Die Beiträge von Balthasar Reuter zu den einzelnen Publikationen sind wie folgt:

[P1]: Der Autor dieser Arbeit diskretisierte und implementierte das Modell zu gleichen
Teilen und in enger Zusammenarbeit mit Florian Frank, verfasste große Teile des

x

https://doi.org/10.1016/j.camwa.2015.04.013
https://doi.org/10.1016/j.camwa.2015.04.013
https://doi.org/10.1016/j.compfluid.2015.05.020
https://doi.org/10.1016/j.camwa.2016.08.006
https://doi.org/10.1007/s00450-016-0324-5
https://doi.org/10.1002/fld.4360
https://doi.org/10.1016/j.camwa.2018.03.045
https://doi.org/10.1016/j.envsoft.2018.01.003
https://doi.org/10.1016/j.envsoft.2018.01.003
https://doi.org/10.1016/j.camwa.2018.12.020
https://doi.org/10.1016/j.camwa.2018.12.020

Manuskripts und war der Alleinverantwortliche für die Auswertung der Recheneffi-
zienz des Algorithmus.

[P2]: Der Autor dieser Arbeit entwickelte und implementierte die OpenMP-Parallelisie-
rung, führte die numerischen Experimente inklusive des Vergleichs verschiedener
Architekturen und der Laufzeitanalyse durch, erstellte die Struktur und verfasste
den Großteil des Artikels, inklusive aller Abbildungen.

[P3]: Der Autor dieser Arbeit diskretisierte und implementierte das Modell in FESTUNG,
inklusive der bibliotheksartigen Umsetzung der Steigungsbegrenzer für beliebige
Ordnungen, entwickelte das striktere Verfahren zur Steigungsbegrenzung, führte die
numerischen Experimente durch, erstellte die Struktur und verfasste den Großteil
des Artikels, inklusive aller Abbildungen.

[P4]: Der Autor dieser Arbeit entwickelte die numerischen Testfälle und bereitete diese
vor, verfasste große Teile des Artikels und lieferte die Mehrheit der Abbildungen.

[P5]: Der Autor dieser Arbeit lieferte entscheidende Ideen zur Verbesserung des anisotro-
pen Steigungsbegrenzers, verifizierte die Methode und verbesserte Text und Abbil-
dungen in der Publikation.

[P6]: Der Autor dieser Arbeit beriet Alexander Jaust bei der Implementierung des Mo-
dells, verbesserte die Recheneffizienz des Programms in erheblichem Maße, führte
die numerischen Experimente durch und verfasste einen Großteil des Manuskripts,
inklusive aller Abbildungen.

[P7]: Der Autor dieser Arbeit beriet Hennes Hajduk bei der Implementierung des ge-
koppelten Modells, wobei das Transportmodell auf dem vom Autor dieser Arbeit
in [P3] implementierten Standardmodell für eine einzelne Transportgröße beruht,
passte den Flachwasserlöser an die überarbeitete Struktur von FESTUNG an und
lieferte entscheidende Ideen für die effiziente und massenerhaltende Umsetzung des
LFT-Algorithmus.

[P8]: Der Autor dieser Arbeit analysierte, in enger Zusammenarbeit mit Vadym Aizinger,
das Oberflächen-Teilsystem und das gekoppelte Modell, implementierte das gekop-
pelte Modell in FESTUNG, führte die numerischen Experimente durch und verfasste
große Teile des Artikels, inklusive aller Abbildungen.

Folgende Ergebnisberichte und Konferenzbeiträge, die im selben Zeitraum entstanden aber
nicht Teil dieser Arbeit sind, liefern weitere Details zu den behandelten Themen:

[Pp1] B. Reuter, A. Rupp, V. Aizinger, F. Frank und P. Knabner. “FESTUNG: A MAT-
LAB / GNU Octave toolbox for the discontinuous Galerkin method. Part IV: Gene-
ric problem framework and model-coupling interface”. Preprint. 2018. url: https:
//arxiv.org/abs/1806.03908.

[R1] B. Reuter und V. Aizinger. KONWIHR III-Project: UTBEST3D. Techn. Ber. Fried-
rich-Alexander University Erlangen-Nürnberg, März 2015. url: https://www1.am.
uni-erlangen.de/˜reuter/ReuterAizinger_2015_KONWIHR.pdf.

xi

https://arxiv.org/abs/1806.03908
https://arxiv.org/abs/1806.03908
https://www1.am.uni-erlangen.de/~reuter/ReuterAizinger_2015_KONWIHR.pdf
https://www1.am.uni-erlangen.de/~reuter/ReuterAizinger_2015_KONWIHR.pdf

Zusammenfassung (German)

[C1] D. Schoenwetter, A. Ditter, V. Aizinger, B. Reuter und D. Fey. “Cache Aware In-
struction Accurate Simulation of a 3-D Coastal Ocean Model on Low Power Hardwa-
re”. In: Proceedings of the 6th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications – Volume 1: SIMULTECH. SCITE-
PRESS, 2016, S. 129–137. doi: 10.5220/0006006501290137.

[C2] B. Reuter und V. Aizinger. “Boosting node-level performance with compile-time
generated and evaluated lookup of loop lengths”. In: ISC HPC Conference. Poster.
Frankfurt, Juni 2016. url: https : / / www1 . am . uni - erlangen . de / research /
poster/ReuterAizinger2016.pdf.

[C3] B. Reuter, F. Frank und V. Aizinger. “FESTUNG – Finite Element Simulation
Toolbox for UNstructured Grids”. In: SIAM Conference on Mathematical and Com-
putational Issues in the Geosciences. Poster. Erlangen, Sep. 2017. url: https://
www1.am.uni-erlangen.de/research/poster/ReuterFA2017.pdf.

xii

https://doi.org/10.5220/0006006501290137
https://www1.am.uni-erlangen.de/research/poster/ReuterAizinger2016.pdf
https://www1.am.uni-erlangen.de/research/poster/ReuterAizinger2016.pdf
https://www1.am.uni-erlangen.de/research/poster/ReuterFA2017.pdf
https://www1.am.uni-erlangen.de/research/poster/ReuterFA2017.pdf

Preface

This thesis consists of eight previously published, peer-reviewed journal articles listed below
and an extended summary of the papers. The summary is structured into four main parts,
providing an introduction into the most important mathematical models, their discretiza-
tion, issues related to the computational performance of these numerical models, and the
software packages in which these are implemented.

The extended summary in Part A is not a sequence of the papers but takes a more wholis-
tic point of view: It covers the relevant ideas from the articles in each part, thus highlighting
the connection between the individual publications, and points to the corresponding papers
for further details. Reprints of the published articles are included in Part B.

[P1] F. Frank, B. Reuter, V. Aizinger, and P. Knabner. “FESTUNG: A MATLAB/GNU
Octave toolbox for the discontinuous Galerkin method, Part I: Diffusion operator”.
In: Computers and Mathematics with Applications 70.1 (2015), pp. 11–46. doi: 10.
1016/j.camwa.2015.04.013.

[P2] B. Reuter, V. Aizinger, and H. Köstler. “A multi-platform scaling study for an
OpenMP parallelization of a discontinuous Galerkin ocean model”. In: Computers
& Fluids 117 (2015), pp. 325–335. doi: 10.1016/j.compfluid.2015.05.020.

[P3] B. Reuter, V. Aizinger, M. Wieland, F. Frank, and P. Knabner. “FESTUNG: A
MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, Part II:
Advection operator and slope limiting”. In: Computers and Mathematics with Ap-
plications 72.7 (2016), pp. 1896–1925. doi: 10.1016/j.camwa.2016.08.006.

[P4] M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek. “Energy efficiency of
the simulation of three-dimensional coastal ocean circulation on modern commodity
and mobile processors”. In: Computer Science – Research and Development 31.4
(2016), pp. 225–234. doi: 10.1007/s00450-016-0324-5.

[P5] V. Aizinger, A. Kośık, D. Kuzmin, and B. Reuter. “Anisotropic slope limiting for
discontinuous Galerkin methods”. In: International Journal for Numerical Methods
in Fluids 84.9 (2017), pp. 543–565. doi: 10.1002/fld.4360.

[P6] A. Jaust, B. Reuter, V. Aizinger, J. Schütz, and P. Knabner. “FESTUNG: A MAT-
LAB/GNU Octave toolbox for the discontinuous Galerkin method, Part III: Hy-
bridized discontinuous Galerkin (HDG) formulation”. In: Computers and Mathe-
matics with Applications 75.12 (2018), pp. 4505–4533. doi: 10.1016/j.camwa.
2018.03.045.

https://doi.org/10.1016/j.camwa.2015.04.013
https://doi.org/10.1016/j.camwa.2015.04.013
https://doi.org/10.1016/j.compfluid.2015.05.020
https://doi.org/10.1016/j.camwa.2016.08.006
https://doi.org/10.1007/s00450-016-0324-5
https://doi.org/10.1002/fld.4360
https://doi.org/10.1016/j.camwa.2018.03.045
https://doi.org/10.1016/j.camwa.2018.03.045

Preface

[P7] H. Hajduk, B. R. Hodges, V. Aizinger, and B. Reuter. “Locally Filtered Trans-
port for computational efficiency in multi-component advection-reaction models”.
In: Environmental Modelling & Software 102 (2018), pp. 185–198. doi: 10.1016/j.
envsoft.2018.01.003.

[P8] B. Reuter, A. Rupp, V. Aizinger, and P. Knabner. “Discontinuous Galerkin method
for coupling hydrostatic free surface flows to saturated subsurface systems”. In:
Computers and Mathematics with Applications 77.9 (2019), pp. 2291–2309. doi:
10.1016/j.camwa.2018.12.020.

Balthasar Reuter’s contributions to the individual publications are summarized as follows:

[P1]: The author of this thesis discretized and implemented the model in equal parts and
in close collaboration with Florian Frank, wrote major parts of the paper, and was
solely responsible for the evaluation of the computational performance.

[P2]: The author of this thesis designed and implemented the OpenMP parallelization,
conducted the numerical experiments including the cross-platform study and per-
formance analysis, and produced the outline and major parts of the paper, including
all figures.

[P3]: The author of this thesis discretized and implemented the model in the FESTUNG
framework, including the arbitrary order slope limiters in a portable and library-like
fashion, proposed the stricter limiting procedure, conducted the numerical experi-
ments, and produced the outline and major parts of the paper, including all figures.

[P4]: The author of this thesis designed and prepared the numerical testcases, wrote parts
of the paper, and contributed the majority of figures.

[P5]: The author of this thesis contributed ideas to the improvement of the anisotropic
limiting procedure, verified the effectiveness of the method, and enhanced text and
figures in the publication.

[P6]: The author of this thesis advised Alexander Jaust on the implementation of the
model, contributed significant performance improvements to the code, conducted
the numerical experiments, and wrote major parts of the paper including all figures.

[P7]: The author of this thesis advised Hennes Hajduk on the implementation of the
coupled model, with the transport model based on the single-component standard
model implemented by the author in [P3], adapted the shallow–water solver to the
updated structure of FESTUNG, and contributed essential ideas for an efficient
and mass-conservative realisation of the Locally Filtered Transport algorithm in
this software framework.

[P8]: The author of this thesis collaborated with Vadym Aizinger on the analysis of the
free-surface subsystem and of the coupled model, implemented the coupled model in
the FESTUNG framework, conducted the numerical experiments, and wrote major
parts of the paper including all figures.

Further preprints, reports, and conference contributions by the author are listed below.
These were published in the same period of time but not included in this thesis and provide
additional details on topics covered in this work.

xiv

https://doi.org/10.1016/j.envsoft.2018.01.003
https://doi.org/10.1016/j.envsoft.2018.01.003
https://doi.org/10.1016/j.camwa.2018.12.020

[Pp1] B. Reuter, A. Rupp, V. Aizinger, F. Frank, and P. Knabner. “FESTUNG: A MAT-
LAB / GNU Octave toolbox for the discontinuous Galerkin method. Part IV: Generic
problem framework and model-coupling interface”. Preprint. 2018. url: https :
//arxiv.org/abs/1806.03908.

[R1] B. Reuter and V. Aizinger. KONWIHR III-Project: UTBEST3D. Tech. rep. Fried-
rich-Alexander University Erlangen-Nürnberg, Mar. 2015. url: https://www1.am.
uni-erlangen.de/˜reuter/ReuterAizinger_2015_KONWIHR.pdf.

[C1] D. Schoenwetter, A. Ditter, V. Aizinger, B. Reuter, and D. Fey. “Cache Aware
Instruction Accurate Simulation of a 3-D Coastal Ocean Model on Low Power
Hardware”. In: Proceedings of the 6th International Conference on Simulation and
Modeling Methodologies, Technologies and Applications – Volume 1: SIMULTECH.
SCITEPRESS, 2016, pp. 129–137. doi: 10.5220/0006006501290137.

[C2] B. Reuter and V. Aizinger. “Boosting node-level performance with compile-time
generated and evaluated lookup of loop lengths”. In: ISC HPC Conference. Poster.
Frankfurt, June 2016. url: https://www1.am.uni- erlangen.de/research/
poster/ReuterAizinger2016.pdf.

[C3] B. Reuter, F. Frank, and V. Aizinger. “FESTUNG – Finite Element Simulation
Toolbox for UNstructured Grids”. In: SIAM Conference on Mathematical and Com-
putational Issues in the Geosciences. Poster. Erlangen, Sept. 2017. url: https:
//www1.am.uni-erlangen.de/research/poster/ReuterFA2017.pdf.

xv

https://arxiv.org/abs/1806.03908
https://arxiv.org/abs/1806.03908
https://www1.am.uni-erlangen.de/~reuter/ReuterAizinger_2015_KONWIHR.pdf
https://www1.am.uni-erlangen.de/~reuter/ReuterAizinger_2015_KONWIHR.pdf
https://doi.org/10.5220/0006006501290137
https://www1.am.uni-erlangen.de/research/poster/ReuterAizinger2016.pdf
https://www1.am.uni-erlangen.de/research/poster/ReuterAizinger2016.pdf
https://www1.am.uni-erlangen.de/research/poster/ReuterFA2017.pdf
https://www1.am.uni-erlangen.de/research/poster/ReuterFA2017.pdf

Part A

Extended summary

Introduction
Chapter 1

Math, science, history,
unraveling the mysteries
that all started with the big bang!1

1.1 Motivation
Free surface flows appear in a broad range of geophysical applications: small lakes, rivers,
or estuaries via coastal and regional ocean to global ocean circulation. In the context of this
thesis we consider shallow-water-type flows, i. e., situations that are characterized by a ver-
tical dimension much smaller than typical horizontal scales. The underlying mathematical
models are not limited to water bodies alone but also applicable to other fluids, e. g., air
when considering atmospheric flows [157]. The primary driving forces largely depend on
the spatial and temporal scales considered and can be as diverse as Coriolis acceleration,
tidal forces, wind stress at the surface, landslides or earthquakes (triggering tsunamis), or
free convection due to unstable stratifications [157]. Numerical simulations using the un-
derlying models are required in many situations, such as environmental studies, storm surge
simulations, or as part of coupled simulations in climate projections.

Subsurface flows consider the flow of water or other fluids below earth’s surface, i. e.,
in permeable domains typically made up by porous media (such as sand or gravel), and
can be further subdivided into saturated and unsaturated regimes. In the latter case, the
pore space can contain a gas phase (e. g., air) next to the fluid phase; however, in this
thesis, only the first case is considered where water fills the entire connected pore space.
The driving forces for groundwater flow are gradients in potential energy (the hydraulic
head) [58]. Understanding and predicting these types of flows plays an important role
in many engineering and environmental applications such as impact assessment for water
supplies or simulation of contaminant transport when planning pollutant remediation in
aquifers [83].

In many environmental settings, situations arise which require the coupling of free sur-
face and subsurface flows, for example wind influencing evaporation from soils, infiltration
of overland flow into the soil during rainfall, or interaction and contaminant propagation
between free surface water bodies and groundwater aquifers [134]. Treating these situa-
tions numerically is challenging: It requires employing two different models and a suitable
method for coupling these at the interface.

Many application scenarios for free surface and subsurface flows (individually or in cou-
pled settings) are characterized by large domain sizes and long simulation times. Hence,
they need considerable amounts of computational work to achieve accurate solutions. In

1From the song History of Everything by Barenaked Ladies

1 Introduction

order to obtain results within a reasonable time frame, the use of efficient algorithms and
high performance computing resources is unavoidable. At the same time, parallelization
finds its way into computing platforms on many levels, and energy efficiency becomes in-
creasingly important. Consequently, time-to-solution is no longer the only relevant metric
when judging the performance of hardware and software calling for novel approaches and
computing architectures.

The scope of this thesis is the application of discontinuous Galerkin (dG) methods to
mathematical models for free surface and subsurface flows with a strong focus on compu-
tational aspects. These models are formulated as conservation laws expressed in the form
of partial differential equations, which make it necessary to transform the continuous de-
scriptions into discrete approximations in order to obtain computable representations. For
that, discontinuous Galerkin methods are a relatively recent technique that offers a wide
flexibility. This comes at a price of high computational costs compared to other estab-
lished methods, thus efficient implementation and effective use of parallel computers are
mandatory to obtain accurate results in reasonable time.

1.2 Structure of this extended summary
Chapter 2 introduces the mathematical models for free surface flow, groundwater flow, and
an approach to couple these two. A short overview of discontinuous Galerkin methods opens
Chapter 3, which presents the dG discretization of the previously described mathematical
models. It further includes a discussion of slope limiters and a computationally efficient
transport scheme that builds upon information computed for slope limiters. Chapter 4 is
concerned with computing aspects and includes a review of current computing architectures
and relevant performance metrics. This is followed by some remarks about the software
packages developed in the context of this work in Chapter 5. A short summary and outlook
conclude this first part of the thesis. References to the author’s publications are included
throughout the text, and reprints of these articles represent Part B.

1.3 Notation
Throughout the text bold letters v denote vector-valued functions and sans-serif bold let-
ters A are matrices / tensors. The outer product of two vectors u ∈ Rm, v ∈ Rn is written
as u ⊗ v := uvT ∈ Rm×n and ∇ := (∂x, ∂y, ∂z)T is the vector differential operator. Fur-
ther notation is introduced as required, in particular in Section 3.2 for notation relevant to
discontinuous Galerkin methods.

4

Mathematical models
Chapter 2

2.1 Three-dimensional baroclinic shallow-water flow
The setting for free-surface flows in geophysical applications is a water body that is sur-
rounded by a solid on the bottom, air on the top, and by solid or other water bodies
(e. g., open sea, rivers) laterally, as depicted in Figure 2.1. The system of three-dimensional
shallow-water equations (3D SWE), often also referred to as the primitive (hydrostatic)
equations, is the most commonly-used model for three-dimensional free surface flows in geo-
physical domains. It comprises conservation equations for momentum and mass defined over
a time-dependent domain with the top boundary moving in vertical direction, and boundary
and initial conditions.1 Additional equations model the transport of temperature, salinity,
and turbulence quantities.

The 3D SWE are derived from Reynolds-averaging the Navier–Stokes equations defined
in a rotating frame of reference

∂t(ρu) + ∇ · (ρu⊗ u) + ∇p+ ρ

(
−fc v
fc u
g

)
−∇ · τ = 0 , (2.1a)

∂tρ+ ∇ · (ρu) = 0 , (2.1b)

where u = (u, v, w)T is the fluid velocity, ρ its density, p the pressure, g the acceleration
due to gravity, fc the coriolis coefficient, and τ the viscous stress tensor. The derivation
uses two essential assumptions:

1. The fluid is assumed to be incompressible, i. e., the fluid density ρ is independent of
pressure p. This filters out fast-moving acoustic waves; however, it does not imply
that density is always constant as small variations (typically less than a few percent)
due to salinity and temperature gradients can be included in the model [95, 157].

2. Denoting vertical and horizontal extent of the fluid domain by H and L, respec-
tively, the aspect ratio of the domain H/L is supposed to be bounded from above
by 1/20 [157]. This ratio is typically smaller than 1/100 in real-world applications.

With variations in temperature and salinity assumed to be small, it follows that den-
sity variations are small, too, so that their impact on changes in mass or inertia can be
neglected. Only in gravity forcing terms such variations are important and must be taken
into account. This allows to replace density ρ by a reference density ρ0 everywhere except
in the hydrostatic pressure term, which is called the Boussinesq approximation [95].

The second assumption justifies the hydrostatic approximation: Let U denote the order of
horizontal velocity components u, v and W the order of the vertical velocity component w.

1This implies elongation / shrinking of lateral boundaries according to the free surface movement. In sim-
ulations that account for wetting / drying at land boundaries, corresponding lateral boundaries are also
allowed to move horizontally. However, this is not considered here.

2 Mathematical models

Ω(t)

∂Ωbot

∂Ωland(t)

∂Ωtop(t)

∂Ωos(t)
z

xy

h(t, x, y)

ξ(t, x, y)

zb(x, y)

Figure 2.1: Schematic of the domain for three-dimensional shallow-water flow, here with
land and open sea boundaries comprising ∂Ωlat(t) = ∂Ωland(t) ∪ ∂Ωos(t)

Then, their derivatives (with respect to space) in the continuity equation (2.1b) are of
order U/L and W/H, respectively. However, the derivatives of horizontal components
typically do not cancel one another, which means that the spatial derivatives for all velocity
components are of the same order U/L = W/H, and the ratio between orders of vertical
and horizontal velocity components W/U = H/L is as small as the aspect ratio of the
domain [157, Sec. 2.4]. Due to this fact, a similar point can be made for orders of terms
in the momentum equation (2.1a) for the vertical velocity component, revealing that the
acceleration, the advection, and the stress terms are small compared to the gravitational
term ρg. Neglecting these small terms simplifies the equation to the hydrostatic pressure
distribution

∂zp = −ρg .

Integrating over the total height of the water column and using the atmospheric pressure
at the surface as the initial condition yields an expression for p that is used to replace the
pressure terms in the remaining momentum equations.

With the non-linearity substantially reduced and the fact that the resulting system
no longer poses a saddle-point problem, its numerical treatment is easier than for non-
hydrostatic models [3]. It does, however, also result in a neglection of vertical accelerations
and the loss of vertical momentum conservation. For an overview of the hierarchy of ocean
models attainable when applying only parts of these approximations see the habilitation
thesis by Aizinger [3], and for a detailed derivation that includes comprehensive motivation
for all steps refer to the book by Vreugdenhil [157].

The full problem statement then reads [9, 157]:
For t ∈ (t0, tend), let Ω(t) ⊂ R3 be the time-dependent domain with moving free surface,

Π the standard orthogonal projection operator from R3 to R2 (Π(x, y, z) = (x, y), ∀(x, y, z) ∈
R3), and Ωxy := ΠΩ(t). The boundary of the domain ∂Ω(t) is subdivided into top ∂Ωtop(t),
bottom ∂Ωbot, and strictly vertical lateral ∂Ωlat(t) sections (see Figure 2.1). The primary
unknowns are water depth h(t, x, y) = ξ(t, x, y) − zb(x, y) [m], where ξ and zb are values
of the vertical coordinate at free surface and sea bed, correspondingly, horizontal veloc-
ity uxy(t, x, y, z) = (u, v)T [m s−1], temperature θ(t, x, y, z) [◦C], salinity s(t, x, y, z) [psu],2

2practical salinity unit, or equivalently, parts per thousand (ppt)

6

2.1 Three-dimensional baroclinic shallow-water flow

turbulent kinetic energy k(t, x, y, z) [m2 s−2], and turbulence parameter ψ(t, x, y, z).3
The momentum equations in conservative form in (t0, tend)× Ω(t) are

∂tuxy + ∇ · (uxy ⊗ u−D∇uxy) + g∇xy (h+ p) +
(
−fc v
fc u

)
= Fu −∇zb , (2.2)

where ∇xy := (∂x, ∂y)T, Fu = Fu(t, x, y, z) contains body forces (e. g., atmospheric pressure
gradient and tidal potential), u = u(t, x, y, z) = (u, v, w)T is the three-dimensional velocity
vector, g is acceleration due to gravity, fc = 2ω sinφ is the Coriolis coefficient with angular
rate of revolution ω and geographical latitude φ, and D = D(u) is the tensor of eddy
viscosity coefficients that may depend on the flow velocity and defined as

D =
(

Du 0
0 Dv

)
and D∇uxy =

(
(Du∇u)T

(Dv∇v)T

)
∈ R2×3 , Du = Dv =

(
Ax 0 0
0 Ay 0
0 0 νt

)
, (2.3)

where Ax, Ay are horizontal and νt the vertical eddy viscosity coefficients, all non-negative.
The baroclinic pressure correction p(x, y, z) accounts for changes in the hydrostatic pres-

sure due to variations in density and is computed as

p(x, y, z) = 1
ρ0

∫ ξ

z

(
ρ(θ, s, ξ − z̃)− ρ0

)
dz̃ , (2.4)

where ρ0 is the reference density, and ρ(θ, s, h) is the density computed from the equation of
state. Neglecting the baroclinic pressure correction (i. e., using constant density ρ0) results
in the barotropic system. The barotropic system served as the free surface flow model in
the coupling to subsurface flows (see Section 2.3 and [Pp1, P8]), and both barotropic and
baroclinic test cases were employed in [P2, P4].

For more than three decades, the most popular choice for the equation of state has been
the International Equation of State of Seawater [154] commonly refered to as UNESCO
equation and presented in some detail by Gill [69, Appendix 3]. A new, thermodynamically
consistent formulation as a free energy function was introduced in 2010 [89]. Here, we use a
polynomial approximation by Klinger [103], which produes a relative error less than 0.05%.

The vertical velocity component w(x, y, z) is computed diagnostically from the incom-
pressible continuity equation

∂xu+ ∂yv + ∂zw = 0 in (t0, tend)× Ω(t) . (2.5)

The boundary conditions specified for this system are:
• Bottom boundary ∂Ωbot: No normal flow

u(zb) · n = 0 (2.6a)

and a friction law on horizontal velocity components

Du∇u(zb) · n = −Cf(u)u(zb) , Dv∇v(zb) · n = −Cf(u) v(zb) , (2.6b)

where n = (nx, ny, nz)T is an exterior unit normal to the bottom boundary and Cf(u) >
0 is the friction coefficient chosen to be either Cf(u) = const. for a linear friction law
or Cf(u) = C ′f |u(zb)| with C ′f = const. for a quadratic friction law.

3This parameter originates from the generic length scale model proposed by Umlauf and Burchard [153],
and its units depend on the choice of the parameterization.

7

2 Mathematical models

• Free surface boundary ∂Ωtop(t): Relative normal velocity must vanish, i. e.,

∂tξ + u(ξ) ∂xξ + v(ξ) ∂yξ − w(ξ) = qp − qe , (2.6c)

where qp, qe are rates of precipitation and evaporation specified in velocity units, and

∇u(ξ) · n = ∇v(ξ) · n = 0 . (2.6d)

• Lateral boundaries ∂Ωlat(t): Different boundary types are defined on subsets of the
boundary. Common boundary types include land boundaries with no normal flow

u · n = 0 on (t0, tend)× ∂Ωland(t) , (2.6e)

open sea boundaries with vanishing normal derivative of horizontal velocity compo-
nents and prescribed Dirichlet boundary data ξos(t, x, y) (e. g., tides) for the surface
elevation

∇u · n = ∇v · n = 0 and ξ = ξos(t, x, y) on (t0, tend)× ∂Ωos(t) , (2.6f)

river boundaries with prescribed flow rate FR through boundary area A, from which
the normal velocity is computed and the tangential velocity is set to 0,

u · n = FR
A

and u · τ = 0 on (t0, tend)× ∂Ωriv(t) , (2.6g)

where τ is a unit tangential vector, and radiation boundaries (outflow) with zero
normal derivative of horizontal velocity components

∇u · n = ∇v · n = 0 on (t0, tend)× ∂Ωrad(t) . (2.6h)

Integrating continuity equation (2.5) over the total height of the water column and apply-
ing top and bottom boundary conditions results in the primitive continuity equation from
which the free surface elevation ξ(t, x, y) is computed:

∂tξ + ∂x

∫ ξ

zb
udz + ∂y

∫ ξ

zb
v dz = qp − qe =: Fh in (t0, tend)× Ωxy . (2.7)

Species transport for salinity s(t, x, y, z) and temperature θ(t, x, y, z) in the baroclinic
system is modeled by advection–diffusion equations for r ∈ {θ, s}

∂tr + ∇ · (u r −Dr∇r) = Fr in (t0, tend)× Ω(t) , (2.8a)

where
Dr =

(
Ar,x 0 0

0 Ar,y 0
0 0 νr

)
(2.8b)

is the diffusivity tensor with horizontal and vertical diffusivities Ar,x, Ar,y, νr ≥ 0. On inflow
boundaries, we specify Dirichlet-type boundary conditions for temperature and salinity val-
ues and account for precipitation and evaporation effects on the salt balance using a virtual
salinity flux boundary condition at the free surface

s(ξ)w(ξ) = −(qp − qe) s(ξ) or s(ξ)u(ξ) · n = −(qp − qe)nz s(ξ) on (t0, tend)× ∂Ωtop .

8

2.2 Groundwater flow

In momentum and species transport equations (2.2), (2.8), turbulent transport phenom-
ena are parameterized as eddy viscosity to account for subgrid-scale transport. While
horizontal transport terms play only a minor role due to the much larger length scales [157,
Sec. 11.2] and are neglected alltogether in many applications (including the studies in [C1,
P2, P4]), i. e., Ax = Ay = Ar,x = Ar,y = 0 [m2 s−1], vertical eddy viscosity plays a crucial
role in vertical mixing, which serves as the mechanism accounting for the vertical trans-
port and eventual drainage of the kinetic energy via bottom friction terms. Vertical eddy
viscosity can be parameterized using a hierarchy of models of increasing complexity and ac-
curacy [157]: By employing a constant diffusion coefficient, algebraic expressions depending
on the flow velocity, or one / two-equation turbulence closure schemes that introduce un-
knowns for the turbulent kinetic energy and other quantities, if applicable, such as mixing
length or energy dissipation.

Many popular two-equation turbulence closures are unified in the generic length scale
(GLS) model proposed by Umlauf and Burchard [153] and are extensively evaluated and
presented with many implementation details by Warner et al. [158]. GLS uses a generic
turbulence length-scale quantity as second variable. In our model, turbulent kinetic en-
ergy k(t, x, y, z) and derived quantity ψ(t, x, y, z) =

(
c0
µ

)p
kmln are transported only in

vertical direction [9] by a diffusion equation in (t0, tend)× Ω(t),

∂tk − ∂z (νk ∂zk) = νt
(
(∂zu)2 + (∂zv)2

)
− νr

g

ρ0
∂zρ− ε , (2.9a)

∂tψ − ∂z (νψ ∂zψ) = ψ

k

(
C1 νt

(
(∂zu)2 + (∂zv)2

)
− C3 νr

g

ρ0
∂zρ− C2 ε Fwall

)
, (2.9b)

where C1, C2, C3 are dimensionless constants, l is the mixing length scale, ε the dissipation
rate, and νt, νr are eddy viscosity and diffusivity coefficients defined in Equations (2.3)
and (2.8b). Specific choices for p,m, n result in different closure schemes. At the free surface,
zero flux is assumed for both turbulence unknowns. For the bottom boundary, an expression
for turbulent kinetic energy can be derived assuming a logarithmic flow profile. However,
since the viscous boundary layer is usually not resolved, this boundary condition should
be applied in flux form to avoid numerical instabilities [158]. For parameter choices and
computation of derived values, see works by Aizinger et al. [9] and Warner et al. [158].

The system of equations is complemented by initial conditions for all primary unknowns,
which we indicate in the following by a zero subscript, e. g., ξ0.

When horizontal momentum equations (2.2) and continuity equation (2.5) are integrated
over the depth of the water column, one obtains the (two-dimensional) shallow-water equa-
tions that model horizontal circulation in terms of depth-integrated quantities. This was
used in [P7] in combination with an advection-reaction model to introduce a novel scheme
for efficient transport. The full baroclinic model for three-dimensional shallow-water flow
is employed in the computational performance studies in [C1, P2, P4], and the barotropic
system is coupled to subsurface flow in [P8].

2.2 Groundwater flow
For groundwater flow, we consider saturated flow through an aquifer, i. e., a region of the
subsurface typically made up of permeable rock (e. g., sandstone, limestone) or granular
material (e. g., sand, gravel) through which water can pass. The material is a type of porous

9

2 Mathematical models

media with pores and cavities between impermeable solid structures. The fraction of non-
solid pore space per total volume is a dimensionless quantity called porosity φ̃, and we
assume that this space is connected and filled completely by water.4 Flow in the pore space
is then described by the Stokes equation; however, a direct numerical simulation of this
model would require the geometry of the pore matrix to be resolved. For relevant domain
sizes and time periods, this is both unfeasible and unnecessary as flow in this regime is very
slow (typically in the order of decimeters per day or less), and thus averaged quantities can
be used instead [83].

With the energy conservation law stated by the Bernoulli equation [58] we have an
expression for the total energy of groundwater flow per unit weight (i. e., scaled by 1/(ρ̃ g V))
referred to as total head

z + P

ρ̃ g
+ |v|

2

2 g , (2.10)

where the first term is called elevation head, the second term pressure head, and the last
term velocity head (representing potential energy, energy due to sustained pressure, and
kinetic energy, respectively). Note that a tilde is used for quantities in groundwater flow to
make it easier to distinguish them from those in the surface flow model. Here, z [m] is the
elevation of the measuring point (with respect to some datum), P [N m−2 = kg m−1 s−2] the
pressure due to the water column above this point, ρ̃ [kg m−3] the density of groundwater,
and v [m s−1] the velocity. As groundwater flow is slow, the last term can be neglected and
the first two form the hydraulic head [58]

h̃ := z + P

ρ̃ g
. (2.11)

Groundwater flow is imposed by variations in the hydraulic head, and, in 1856, Henry
Darcy determined experimentally the relationship between a hydraulic gradient and the
specific discharge rate for one-dimensional flow through sand beds [58]. Later, this relation-
ship was also derived from the Stokes equation via homogenization [160] and extended to
multi-dimensional applications and anisotropic media. This extended Darcy Law takes the
form [58]

q̃ = −K̃ ∇h̃ , (2.12)

for specific discharge q̃(t, x, y, z) [m3 m−2 s−1 = m s−1] also called seepage velocity or Darcy
velocity, which is a measure of the volumetric discharge per area and time. The symmetric
and positive-definite hydraulic conductivity matrix K̃(x, y, z) [m s−1] depends on the intrinsic
permeability of the material and, by extension, also on the porosity.

Consider the total mass of fluid m =
∫
V ρ̃ φ̃ dx with density ρ̃ [kg m−3] stored in a rep-

resentative elementary volume V with porosity φ̃. Denoting the density of mass flow
by ρ̃ q̃(t, x, y, z), the corresponding total mass flow through the boundaries of V is de-
termined by

∫
∂V ñ · (ρ̃ q̃) ds. In addition, we allow for generation / destruction of mass at

some rate W̃0(t, x, y, z) [s−1] and thus can formulate a mass balance equation that becomes
after applying Gauss’s divergence theorem [83]

∂t

∫
V
ρ̃ φ̃ dx+

∫
V

∇ · (ρ̃ q̃) dx =
∫
V
ρ̃ W̃0 dx .

4Unsaturated situations and multiphase flow (e. g., gas or oil inclusion) require additional consideration.

10

2.3 Coupled model

Choosing an infinitesimally small V , assuming incompressibility of the fluid (thus neglect-
ing spatial variations in density), and dividing by density yields the point-wise continuity
equation

∂tφ̃+ φ̃

ρ̃
∂tρ̃+ ∇ · q̃ = W̃0 .

With that, the full problem statement reads:
Let (t0, tend) be a finite time interval and Ω̃ ⊂ R3 denote the polygonally bounded domain

for three-dimensional groundwater flow with boundary ∂Ω̃ subdivided into Dirichlet ∂Ω̃D
and Neumann ∂Ω̃N parts. With Darcy Law (2.12) and the chain rule, we obtain the equation
for groundwater flow [58, 83]

S0 ∂th̃−∇ ·
(

K̃ ∇h̃
)

= W̃0 in (t0, tend)× Ω̃ , (2.13a)

where S0 := ∂
h̃
φ̃+ φ̃

ρ̃
∂
h̃
ρ̃ [m−1] denotes the specific storage, a measure for the change of mass

due to a change in head. This equation is complemented by initial conditions for hydraulic
head and boundary conditions for head and flux

h̃ = h̃D on (t0, tend)× ∂Ω̃D , (2.13b)
−K̃ ∇h̃ · ñ = q̃N on (t0, tend)× ∂Ω̃N , (2.13c)

h̃ = h̃0 in {t0} × Ω̃ . (2.13d)

This mathematical model yields a relatively simple macroscopic description of saturated
groundwater flow, where the microscopic pore structure is relevant but is not resolved ex-
plicitly and instead incorporated in averaged effective coefficients. The underlying approach
based on homogenization is common to models even for more complicated situations, e. g.,
where saturated systems with multiphase flow (e. g., water, air, oil, etc.) [32] or growth and
degression of solid structures (thus changing the porosity) are considered [138, 139].

The model (2.13) is discretized with the local discontinuous Galerkin method (see Sec-
tion 3.4) and used in coupled simulations with barotropic free-surface flow in [P8]. A similar
model serves as the prototype application for the presentation of discretization and efficient
implementation techniques in [P1].

2.3 Coupled model
In situations where a free surface water body is located on top of a subsurface flow sys-
tem, the interaction between both is of interest, e. g., for environmental applications such
as infiltration of overland flow into soil during landfall, contaminant propagation, sedimen-
tation processes, or the interaction of seas, lakes, rivers, or wetlands with groundwater
aquifers. Typically, different mathematical models are used in each flow domain while they
are coupled by suitable interface conditions. In the free surface flow domain, momentum
conservation is usually modeled by the Navier–Stokes equations or derived models, e. g.,
Stokes equation [133, 134], the kinematic wave equation [117], or two- / three-dimensional
shallow water equations as in the context of this thesis and in [49, 53, 114]. Darcy’s model
or Richards’ equation is typically applied to describe flow in the subsurface possibly using
the Brinkman extension for systems with high porosity [117] or the Forchheimer extension
for high Reynolds number flows [91]. At the interface, either a sharp interface with a set of

11

2 Mathematical models

Ω(t)

Ω̃

h(t, x, y)

zb(x, y)

ξ(t, x, y)

n

ñ

z

xy

∂Ωbot = ∂Ω̃top

Figure 2.2: Schematic of the coupled domain

coupling conditions (with the Beavers-Joseph-Saffman [25, 135] condition or modifications
thereof being the most popular choice) or a transition region is used, in which conservation
equations are averaged over the transition zone [133].

[P8] considers barotropic free surface flow (i. e., (2.2)–(2.7) without the baroclinic pressure
correction (2.4)), the groundwater flow equation (2.13), and a sharp interface separating
the two domains. The challenge in formulating interface conditions for the coupling of
surface and subsurface flows lies in finding a set of transition conditions that are physically
meaningful and result in a mathematically well-posed system of equations. Here, we model
the coupling of barotropic surface and subsurface flows as conservation of volume / mass
and continuity of pressure (head) at the interface, which is close to conditions used in
Navier–Stokes / Darcy coupled models (e. g., by Fetzer, Smits, and Helmig [63]), however
with modifications that are due to the absence of vertical momentum conservation in the
hydrostatic free surface flow model.

For conservation of mass, one must ensure that the mass loss from one domain due to
outflow through the coupling interface must be gained by the other domain and vice versa.
In our case, this means that normal fluxes across the interface must be continuous, i. e.,

(u · n)
∣∣∣
∂Ωbot

= − (q̃ · ñ)
∣∣∣
∂Ω̃top

, (2.14a)

where the sign is due to the opposing directions of exterior normal vectors (see Figure 2.2).
Continuity of pressure follows from a continuity argument for the total head (2.10), where

we balance the hydraulic head h̃ (2.11) by the hydrostatic pressure exerted by the water
depth h and the dynamic pressure due to (non neglectable) kinematic energy in the shallow-
water domain. This results in a continuity requirement for the hydraulic head, i. e.,

h̃
∣∣∣
∂Ω̃top

=
(
ξ + uxy · uxy

2 g

) ∣∣∣∣
∂Ωbot

. (2.14b)

These choices can be justified using a weak energy estimate of the stationary coupled
problem as presented in [P8], which further includes a proof of discrete energy stability
for the coupled system (see Section 3.5), convergence tests for the discretization error, and
a simulation of a realistic scenario.

12

The discontinuous Galerkin method
Chapter 3

3.1 Types of discontinuous Galerkin methods
Discontinuous Galerkin (dG) schemes are a class of numerical methods for solving differ-
ential equations that have become increasingly popular over the last three decades. They
share characteristics with methods from the finite volume and finite element frameworks:
dG methods employ the finite element approach for a weak formulation only with discon-
tinuous ansatz and test spaces; this is combined with discontinuous approximate solutions,
numerical fluxes, and slope limiters also used in finite volume methods [40].

The application of dG to a linear hyperbolic equation describing steady neutron transport
proposed by Reed and Hill [125] in 1973 is generally reckoned as the origin of the method,
which was soon extended to non-linear hyperbolic conservation laws [34]. However, at first,
the presence of non-linearities required implicit time-stepping schemes to obtain higher-
order accuracy rendering it computationally inefficient [40]. The breakthrough in con-
junction with explicit time-stepping schemes was the Runge–Kutta discontinuous Galerkin
(RKDG) method introduced by Cockburn and Shu [43] in 1989 with extensions to multidi-
mensional cases and systems in a series of papers [38, 41, 42, 45]. [P3] and [P5] employ this
type of time-explicit dG method for the discretization of linear advection equations and the
investigation of slope-limiting techniques.

The idea of rewriting higher-order differential equations as systems of first-order equations
and treating each of which with the established dG framework allowed Cockburn and Shu
[44] to derive the local discontinuous Galerkin (LDG) method in 1998 using previous work of
Bassi and Rebay [23]. With that, the dG method was able to handle higher order operators
and thus has ultimately been opened to a wide range of applications including those in the
present work in the context of ocean modelling or groundwater flow in [P1, C1, P2, P4, P7,
P8].

Already before LDG, another avenue of dealing with second-order terms in the context
of elliptic and parabolic problems was investigated independently in the 1970s. These ap-
proaches utilized weakly-imposed continuity conditions on interfaces, e. g., by Babuška [18].
The application of this technique to second-order elliptic problems by Babuška and Zlámal
[19] and Wheeler [159] followed by an extension of Arnold [15] to non-linear parabolic
problems in 1982 are the cornerstones for interior penalty discontinuous Galerkin (IP-dG)
methods. These methods are further classified according to the symmetry of the resulting
bilinear form into symmetric interior penalty discontinous Galerkin (SIP-dG) and nonsym-
metric interior penalty discontinuous Galerkin (NIP-dG) or, when omitting the symmetriza-
tion term, incomplete interior penalty discontinuous Galerkin (IIP-dG) methods. Based on
NIP-dG, Oden, Babuška, and Baumann [122] developed a formulation without any penalty
parameters generally referred to as OBB-method. A comprehensive introduction into dG

3 The discontinuous Galerkin method

methods without mixed formulations is the book by Rivière [128]. Both IP-dG and LDG
methods were unified in the analysis framework of Arnold et al. [16] for elliptic problems.

For a more exhaustive overview of the historical evolution of these methods, refer to
the introduction by Cockburn, Karniadakis, and Shu [40] in the proceedings of the first
international symposium on dG methods [39] and more condensed overviews by Aizinger
[1] or Di Pietro and Ern [54]. The latter contains also a very illustrative figure highlighting
the rather recent nature of and, compared to that, high interest in dG methods [54, Fig. 1].

Ab initio, dG methods had to prove their worth compared to established finite volume
and finite element methods, in which context Cockburn, Karniadakis, and Shu [40] list the
following:

1. High formal orders of accuracy are easily achieved using high-order approximating
polynomials.

2. The local nature of the degrees of freedom and their loose coupling make the method
highly parallelizable.

3. Easy treatment of complicated geometries and boundary conditions.
4. h- and p-adaptivity (i. e., refining / coarsening the mesh or changing approximation

orders locally) can be easily incorporated due to the lack of continuity requirements
on interfaces.

In particular for time-dependent advection-dominated PDEs, dG methods established them-
selves as a popular choice as outlined by a recent survey of Shu [141]. However, the large
number of degrees of freedom (in particular for the LDG method) puts them at a disadvan-
tage for diffusion dominated problems, where continuous-in-space approximations appear
to have the edge [40]. This is most pronounced in time-implicit or stationary numerical
solvers, where matrices must be assembled, and large numbers of local degrees of freedom
are exacerbated by a quadratic growth of matrix sizes. Attempts to overcome this drawback
include the choice of a reduced approximation order for flux unknowns while retaining the
original order of convergence for diffusion operators [132] or specific solvers for the linear
systems. These exploit properties of the underlying approximation spaces by splitting the
degrees of freedom into coarse and fine parts, such as p-multigrid methods [22, 64, 116] or
the very recent hierarchical scale separation (HSS) and its variants [8, 11, 93, 149].

Another relatively recent1 technique called hybridization is to introduce auxilliary un-
knowns supported on the skeleton of the computational mesh (i. e., edges in 2D and faces
in 3D). After carrying out the dG discretization procedure, static condensation (a Schur
complement reduction technique) can be applied to obtain a significantly smaller system
of equations that has to be solved globally on the mesh skeleton and additional small
element-local (and uncoupled) systems. Due to the reduced size of the globally coupled sys-
tem, this approach can lead to considerably lower computation times for higher polynomial
approximation orders and in parallelized solvers. When used in conjunction with mixed for-
mulations, the resulting method is called hybridized discontinuous Galerkin (HDG) method
and was described by Cockburn, Gopalakrishnan, and Lazarov [37] as part of a unifying
framework in 2009. For dG methods without mixed formulations they are referred to as
Hybrid High-Order (HHO) methods and were introduced by Di Pietro and Ern [55] for
linear elasticity and by Di Pietro, Ern, and Lemaire [56] for diffusion problems. If rewritten
in mixed form, HHO methods can be incorporated into the framework of HDG methods by
excplicitly identifying the numerical flux, as shown by Cockburn, Di Pietro, and Ern [36]

1Recent in this context, as underlying ideas are much older. See [P6, 36] for historical overviews.

14

3.2 Notation and basic definitions

for a diffusion problem. The application of a hybridized dG method to a linear advection
operator and its efficient implementation are discussed in [P6].

3.2 Notation and basic definitions
Before presenting the LDG discretization for free surface and subsurface flow, more notation
is introduced. On domains Ω ⊂ Rd, d ∈ {1, 2, 3}, and d− 1 dimensional surfaces γ, the L2

norm of u is denoted by ‖u‖Ω, and L2 inner products of functions u, v are written as (u, v)Ω
and 〈u, v〉γ , respectively.

In the following, T∆ = T∆(Ω) denotes a non-overlapping d-dimensional polytopic partition
of some Ω ∈ {Ω(t),Ωxy, Ω̃} into elements T of characteristic size ∆, and F∆(Ω) is the
corresponding set of faces γ. For T ∈ T∆, let nT be the unit normal on ∂T exterior to T .
On neighboring mesh elements Ti, Tj ∈ T∆, Ti 6= Tj , we define the average {|·|} and the
jump [[·]] on ∂Ti ∩ ∂Tj for a scalar function w and a vector function v as follows:

{|w|} := 1
2(w|Ti + w|Tj) , [[w]] := w|Ti nTi + w|Tj nTj ,

{|v|} := 1
2(v|Ti + v|Tj) , [[v]] := v|Ti · nTi + v|Tj · nTj ,

[[[v]]] := v|Ti ⊗ nTi + v|Tj ⊗ nTj ,

i. e., a jump in a scalar variable is a vector, and a jump in a vector is a scalar. In addition,
[[[·]]] produces a second-order tensor by applying the scalar jump definition component-wise
to a vector.

The test and trial spaces for the LDG method are defined as the d-dimensional (d ∈
{1, 2, 3}) broken polynomial spaces of order k ∈ N0

Pdk(T∆(Ω)) :=
{
v ∈

[
L2(Ω)

]d
: v|T is a polynomial of degree at most k,∀T ∈ T∆(Ω)

}
.

The specific anisotropy of the shallow-water model presented in Section 2.1 is reflected
in the choice of computational mesh employed in our formulation. We construct the 3D
mesh T∆(Ω(t)) by extending a 2D triangular mesh T∆(Ωxy) in the vertical direction with
nodes placed at z-levels according to some predefined criteria, as illustrated in Figure 3.1.
For a chosen maximum number of layers of 3D elements n ∈ N, typical strategies for the
vertical placement of nodes include:
• Globally (or within a part of the domain) uniform levels ξmax

0 = z0 > z1 > · · · >
zn+1 = zmin

b resulting in one or more layers of prismatic elements, where ξmax
0 and

zmin
b are the global (or within the part of the domain) maximum and minimum values

of initial free-surface elevation and bathymetry, respectively.
• Locally per 2D node (x, y) determined levels ξ0(x, y) = z0 > z1 > · · · > zn+1 =
zb(x, y) resulting in the same number of elements per triangle everywhere.

It is important to note that in the following the resulting three-dimensional elements are
called prisms in all cases, even when top and bottom faces are not parallel, in which case
we have strictly speaking “truncated prisms”.

Turbulence quantities for vertical eddy viscosity parameterization in the free-surface flow
problem (cf. Section 2.1) are discretized on vertical one-dimensional segments2 that pass

2Note that, due to the alignment of prisms in vertical columns, each quadrature point of an element
in T∆(Ω(t)) is located on a vertical line that passes through the corresponding quadrature points of all
other elements in the column and the corresponding two-dimensional element in T∆(Ωxy).

15

3 The discontinuous Galerkin method

x
y

z

Tz ∈ T∆(Ωz)

2D mesh

3D mesh

Txy ∈ T∆(Ωxy)

T ∈ T∆(Ω(t))

Figure 3.1: Composition of the 3D mesh T∆(Ω(t)) from a 2D triangulation T∆(Ωxy) with
the set of 1D segments T∆(Ωz) aligned with two-dimensional quadrature points

through the quadrature points of the prismatic mesh (see Section 3.3 for details and Fig-
ure 3.1 for an illustration). In the following, we call this family of 1D meshes T∆(Ωz(t)).
For simplicity, we use the same type of 3D mesh for the subsurface model from Section 2.2
as well and introduce the following sets of elements and faces:
IT,Txy set of prismatic elements vertically aligned with triangle Txy;
Iv, Ih sets of lateral (vertical) faces and horizontal faces in F∆(Ω(t));
Iint, Iext sets of all interior faces and domain boundary faces in F∆(Ω(t));
Itop, Ibot sets of top and bottom domain boundary faces in F∆(Ω(t));
Iz set of segment endpoints (both interior and domain boundary) in F∆(Ωz(t));
Ĩint set of interior faces in F∆(Ω̃);
ĨD, ĨN sets of faces on Dirichlet and Neumann boundaries in F∆(Ω̃).
We combine subscripts and superscripts as needed, e. g., Ih

int refers to all horizontal interior
faces. When referring only to those faces of a set that belong to one element T , we write I∗,T .
In the shallow-water domain, all prismatic elements T ∈ T∆(Ω(t)) within one column are
aligned with a corresponding triangular element Txy ∈ T∆(Ωxy) and thus, we also use this
restriction for faces corresponding to an element: For example, Iv

int,Txy
denotes the set of

three-dimensional lateral faces vertically aligned with interior boundary edges of the two-
dimensional element Txy.

3.3 LDG discretization for three-dimensional shallow-water flow
Historically, structured grids have been the most popular choice for numerical ocean models
and are still a mainstay of production codes with the most widely used structured-grid

16

3.3 LDG discretization for three-dimensional shallow-water flow

models for global circulation being MITgcm3, POM4, and POP25. For regional and coastal
ocean, Klingbeil et al. [102] recently reviewed the state-of-the-art in structured-grid models,
while, at the same time, unstructured-grid models have been becoming more and more
popular for more than two decades due to their superior ability to resolve complex coastal
topographies [74]. Only recently, the use of unstructured meshes has been gaining attraction
also in global circulation models [48] and resulted in a number of new large-scale models,
e. g., FESOM6, ICON7, or MPAS8.

While the majority of ocean models employ finite volume (FV) discretizations, there are
also models based on finite difference methods, the classical finite element (FE) method,
or hybrid FE-FV models [97]. The use of discontinuous Galerkin schemes in ocean models
is rather recent and was commenced with the first local discontinuous Galerkin scheme
derived for two-dimensional shallow-water flow [1, 5]. After that, it was soon generalized to
the three-dimensional barotropic model [1, 6, 51] with a stability estimate in [7] and further
extended to the full baroclinic system with higher-order turbulence closure schemes [9].

In the time passed since the appearance of [5], discontinuous Galerkin methods for the sys-
tem of two-dimensional shallow-water equations [52, 61, 106, 111, 127, 156, 165] gained wide
popularity and were applied to atmospheric flows [20, 70, 113], flood inundation [26, 50, 100],
global circulation [136], or coastal ocean [P7, 27, 28, 78, 79, 96, 163, 164], including exten-
sions to multi-layer and non-hydrostatic models [90, 94, 123], and even motivated an entire
book on this topic [101]. UTBEST3D (see Section 5.2) was the first coastal ocean model to
make use of discontinuous Galerkin methods for the system of three-dimensional shallow-
water equations. Later, the coastal ocean model SLIM9 was introduced using SIP-dG and
an ALE (Arbritrary Lagrangian–Eulerian) formulation on prismatic meshes [29], which was
applied in a number of different studies [98, 155]. Recently, the Thetis10 coastal ocean model
emerged, which employs the code-generation capabilities of the Firedrake11 framework in
an attempt to achieve good computational performance [97]. Other three-dimensional stud-
ies employ mixed spectral element / dG formulations [35], non-hydrostatic models [30, 59,
152], or mixed-order / filtering approaches to increase convergence orders [46].

Our discretization of the free-flow model introduced in Section 2.1 follows the standard
procedure for the LDG method with some important modifications needed to obtain a stable
formulation. See works by Aizinger et. al. [1, 6, 7, 9, 51] for all details, of which relevant
steps are reproduced and annotated in the following.

First, we combine advective fluxes in primitive continuity equation (2.7) and momentum
equations (2.2) in the primitive numerical fluxes

Ch(h,uxy) :=
∫ ξ

zb
uxy dz , (3.1a)

Cu(h,u) :=
(
Cu(h,u)
Cv(h,u)

)
:=

(
u2 + g (h+ p) u v uw

u v v2 + g (h+ p) v w

)
, (3.1b)

3http://mitgcm.org
4http://www.ccpo.odu.edu/POMWEB
5http://www.cesm.ucar.edu/models/cesm1.0/pop2/
6https://fesom.de/
7https://www.mpimet.mpg.de/en/science/models/icon-esm/
8https://mpas-dev.github.io/
9https://www.slim-ocean.be

10https://thetisproject.org/
11https://firedrakeproject.org/

17

http://mitgcm.org
http://www.ccpo.odu.edu/POMWEB
http://www.cesm.ucar.edu/models/cesm1.0/pop2/
https://fesom.de/
https://www.mpimet.mpg.de/en/science/models/icon-esm/
https://mpas-dev.github.io/
https://www.slim-ocean.be
https://thetisproject.org/
https://firedrakeproject.org/

3 The discontinuous Galerkin method

introduce the right-hand side vector F (uxy) := Fu − g∇xyzb − fc
(−v

u

)
, and split Equa-

tions (2.2), (2.7), and (2.8) containing second-order terms into pairs of first-order equa-
tions.12 Introducing auxiliary variables q ∈ R2×3, qr ∈ R3 for diffusive fluxes yields the
mixed formulation

∂th+ ∇xy ·Ch(h,uxy) = Fh , (3.2a)
∂tuxy + ∇ · (Cu(h,u) + q) = F (uxy) , (3.2b)
D−1q + ∇uxy = 0 , (3.2c)
∇ · u = 0 , (3.2d)
∂tr + ∇ · (u r + qr) = Fr , for r ∈ {s, θ} , (3.2e)
D−1
r qr + ∇r = 0 , for r ∈ {s, θ} , (3.2f)

∂tm+ ∂z(νm qm) = Fm , for m ∈ {k, ψ} , (3.2g)
qm + ∂zm = 0 , for m ∈ {k, ψ} , (3.2h)

p = 1
ρ0

∫ ξ

z
(ρ(θ, s, ξ − z̃)− ρ0) dz̃ , (3.2i)

where r ∈ {s, θ} and m ∈ {k, ψ} are transport and turbulence variables, respectively,
and Fm contains the right-hand-side terms of turbulence equations (2.9). Note that Equa-
tion (3.2c) represents a system of 2×3 equations. To reduce horizontal mixing of turbulence
variables k, ψ, those are discretized on vertical one-dimensional segments that pass through
the quadrature points of the prismatic mesh (see Section 3.2).

By multiplication with smooth test functions δh, δw, δr, δm, δq,m, ϕu, ϕr, Φ, and partial
integration over elements T ∈ T∆(Ω(t)), Txy ∈ T∆(Ωxy), or Tz ∈ T∆(Ωz(t)), respectively, we
obtain the weak formulation

(∂th, δh)Txy
− (Ch(h,uxy) ·∇xy, δh)Txy

+ 〈Ch(h,uxy) · nxy, δh〉∂Txy
= (Fh, δh)Txy

, (3.3a)

(∂tuxy,ϕu)T − ((Cu(h,u) + q) ∇,ϕu)T + 〈(Cu(h,u) + q)n,ϕu〉∂T = (F (uxy),ϕu)T ,
(3.3b)(

D−1 q,Φ
)
T
− (uxy ⊗∇,Φ)T + 〈uxy ⊗ n,Φ〉∂T = 0 , (3.3c)

− (u ·∇, δw)T + 〈u · n, δw〉∂T = 0 , (3.3d)
(∂tr, δr)T − ((u r + qr) ·∇, δr)T + 〈(u r + qr) · n, δr〉∂T = (Fr, δr)T , (3.3e)(

D−1
r qr,ϕr

)
T
− (r∇,ϕr)T + 〈rn,ϕr〉∂T = 0 , (3.3f)

(∂tm, δm)Tz
− (νm qm ∂z, δm)Tz

+ 〈νm qm nz, δm〉∂Tz
= (Fm, δm)Tz

, (3.3g)
(qm, δq,m)Tz

− (m∂z, δq,m)Tz
+ 〈mnz, δq,m〉∂Tz

= 0 . (3.3h)

To keep the notation uniform, L2 products over zero-dimensional domains ∂Tz denote
evaluation at the respective point. This weak form is well-defined for h, δh ∈ H1(Ωxy),
uxy,ϕu ∈ [H1(Ω(t))]2, qr,ϕr ∈ [H1(Ω(t))]3, q,Φ ∈ [H1(Ω(t))]2×3, w, s, θ, δr ∈ H1(Ω(t)),
k, ψ, δm, δq,m ∈ H1(Ωz(t)), and for a. e. t ∈ [t0, tend].

Due to the fact that all prismatic elements T within one column are vertically aligned
with a corresponding triangular element Txy (cf. Figure 3.1), and, in the same way, lateral

12Corresponding changes to boundary conditions are omitted in the interest of a compact presentation.

18

3.3 LDG discretization for three-dimensional shallow-water flow

boundaries ∂Tlat are aligned with corresponding two-dimensional edges ∂Txy, the weak form
of the primitive continuity equation (3.3a) can be rewritten as

(∂th, δh)Txy
−
∑

T∈IT,Txy

(uxy ·∇xy, δh)T +
∑

T∈IT,Txy

〈uxy · nxy, δh〉∂Tlat
= (Fh, δh)Txy

, (3.4)

where set IT,Txy contains all 3D elements T in the column corresponding to the 2D ele-
ment Txy, and ∂Tlat is the lateral boundary of element T .

Again, we approximate the solution to problem (3.3) by finite-dimensional functions,
choose suitable numerical fluxes across element boundaries, and incorporate boundary con-
ditions to obtain the semi-discrete problem:

Let Vd := Pdk(T∆(Ω(t))), X := P1
k(T∆(Ωxy)), and Z := P1

k(T∆(Ωz(t))) be the dG spaces of
d-dimensional functions from the broken polynomial space of order k defined on the triangu-
lation of the time-dependent three-dimensional shallow-water domain T∆(Ω(t)) or the cor-
responding two-dimensional domain T∆(Ωxy) and one-dimensional segments T∆(Ωz(t)), re-
spectively. Seek (H,Uxy,W,Q,Θ,QΘ, S,QS ,K,Qk,Ψ, Qψ) ∈ X×V2×V1×[V3]2×V1×V3×
V1×V3×Z×Z×Z×Z such that, for all T ∈ T∆(Ω(t)), Txy ∈ T∆(Ωxy), Tz ∈ T∆(Ωz(t)), the
following holds for a. e. t ∈ [t0, tend] and for all (δh,ϕu,Φ, δw, δΘ, δS ,ϕΘ,ϕS , δk, δq,k, δψ, δq,ψ)
∈ X × V2 × [V3]2 × V1 × V1 × V1 × V3 × V3 ×Z ×Z ×Z ×Z:

(∂tH, δh)Txy
+
∑

T∈IT,Txy

(
AH,T (H,Hs,Uxy, δh)−

(
Uxy H
Hs
·∇xy, δ

)
T

)
= (Fh, δh)Txy

, (3.5a)

(∂tUxy,ϕu)T +AU ,T (H,U ,ϕu) + EU ,T (Q,ϕu) = (F (Uxy),ϕu)T , (3.5b)(
D−1 Q,Φ

)
T

+ EQ,T (Uxy,Φ) = 0 , (3.5c)

AH,T (H,Hs,U , δw) +AW,T (U , δw)− (U ·∇, δw)T = 0 , (3.5d)
(∂tR, δR)T +AR,T (U , R, δR) + ER,T (QR, δR) = (FR, δR)T , (3.5e)
(D−1

R QR,ϕR)T + Eq,T (R,ϕR) = 0 , (3.5f)

(∂tM, δM)Tz
− (νM QM ∂z, δM)Tz

+
∑

γ∈Iz,Tz

〈
νM Q↓M nz, δM

〉
γ

= (FM , δM)Tz
, (3.5g)

(QM , δq,M)Tz
− (M ∂z, δq,M)Tz

+
∑

γ∈Iz,Tz

〈
M↑ nz, δq,M

〉
∂Tz

= 0 , (3.5h)

for R ∈ {S,Θ}, M ∈ {K,Ψ} with forms

AH,T (H,Hs,Uxy, δ) :=
∑

γ∈Iv
ext,T

〈(UxyH)bdr
Hs

· nxy, δ
〉
γ

+
∑

γ∈Iv
int,T

〈
Ĉh(H,Hs,Uxy), δ

〉
γ
,

AU ,T (H,U ,ϕu) := − (Cu(H,U) ∇,ϕu)T +
∑

γ∈Iext,T

〈Cu(Hbdr,Ubdr)n,ϕu〉γ

+
∑

γ∈Iv
int,T

〈
Ĉu(H,U),ϕu

〉
γ

+
∑

γ∈Ih
int,T

〈
Cu(H, {|Uxy|} ,W ↓)n,ϕu

〉
γ
,

AW,T (U , δw) :=
∑
γ∈Ih

T

〈
{|Uxy|} · nxy +W ↓ nz, δw

〉
γ
,

19

3 The discontinuous Galerkin method

AR,T (U , R, δR) := − (U R ·∇, δR)T +
∑

γ∈Iext,T

〈UbdrRbdr · n, δR〉γ +
∑

γ∈Iv
int,T

〈
ĈR(U , R) · n, δR

〉
γ

+
∑

γ∈Ih
int,T

〈
({|Uxy|} · nxy +W ↓ nz)Rup, δR

〉
γ
,

EU ,T (Q,ϕu) := − (Q ∇,ϕu)T +
∑

γ∈Iext,T

〈Qbdrn,ϕu〉γ +
∑

γ∈Iint,T

〈{|Q|} n,ϕu〉γ ,

EQ,T (Uxy,Φ) := − (Uxy ⊗∇,Φ)T +
∑

γ∈Iext,T

〈(Uxy)bdr ⊗ n,Φ〉γ +
∑

γ∈Iint,T

〈{|Uxy|} ⊗ n,Φ〉γ ,

ER,T (QR, δR) := − (QR ·∇, δR)T +
∑

γ∈Iext,T

〈(QR)bdr · n, δR〉γ +
∑

γ∈Iint,T

〈{|QR|} · n, δR〉γ ,

Eq,T (R,ϕR) := − (R∇,ϕR)T +
∑

γ∈Iext,T

〈Rbdrn,ϕR〉γ +
∑

γ∈Iint,T

〈{|R|} n,ϕR〉γ .

Remark 1 (Mesh smoothing): With all state variables approximated by functions from
a discontinuous space, including water height H = Ξ− zb, the free surface elevation Ξ may
have jumps across element boundaries. However, the computational mesh uses a continuous
representation of the top boundary using a smoothing algorithm that updates z-coordinates
of top boundary nodes every small (chosen) number of time steps (cf. Figure 3.2). This
piecewise linear free surface representation ξs(t, x, y) is computed by taking the weighted
mean of the free surface elevation approximation Ξ(t, x, y) from the surrounding elements [1,
51]. The smoothed mesh height is also incorporated into fluxes over lateral faces AH,T of
the semi-discrete primitive continuity equation (3.5a), in which boundary terms of the weak
formulation (3.4) are expressed using the strictly positive water height h∑

T∈IT,Txy

〈uxy · nxy, δh〉∂Tlat
=
∑

T∈IT,Txy

〈
uxy h

h
· nxy, δh

〉
∂Tlat

,

with the water height in the denominator replaced by the smoothed mesh heightHs(t, x, y) =
ξs(t, x, y)− zb(x, y) after discretization. This yields the flux function Ĉh(H,Hs,Uxy) as an
approximation of the non-linear boundary flux (UxyH) ·nxy/Hs, which can then be treated
using approximate Riemann solvers (see Remark 4). To preserve local mass conservation
the same formulation is also applied to boundary fluxes in continuity equation (3.5d) [1].

Remark 2 (Diffusive fluxes): Linear fluxes in forms E∗,T stem from the diffusion op-
erators in the equations for momentum (2.2) and species transport (2.8), which can be
approximated by central fluxes in agreement with the isotropic nature of the operator [1].
On horizontal faces, these fluxes can also be discretized by an asymmetric approach to
reduce matrix bandwidths in a semi-implicit formulation by taking the values of primary
unknowns in forms EQ,T , Eq,T from the element below and values of auxiliary flux variables
in forms EU ,T , ER,T from the element above [9]. This is also done for the fluxes in the
one-dimensional turbulence equations (3.5g) and (3.5h) denoting the subjacent values (i. e.,
from element below) Q↓M and upper values (i. e., from element above) M↑. For brevity, we
assume boundary conditions (see Section 2.1) are incorporated in this definition.

Remark 3 (Vertical velocity): The discrete continuity equation (3.5d) serves as means
to compute the vertical velocity component W diagnostically from given horizontal veloc-
ities Uxy and thus to maintain a divergence-free velocity field. This can be interpreted as
solving an ordinary differential equation for W upward within each column of prismatic

20

3.3 LDG discretization for three-dimensional shallow-water flow

Tk

ξ|Tk Tl

ξ|Tl

zb

H|Tk

H|Tl

ξs

Hs

zb

Figure 3.2: Discontinuous representation of water height and mesh smoothing

elements. For that, W is used from given initial conditions (2.6a) at the bottom boundary
or the element below on other horizontal faces, denoted by W ↓ in form AW,T , and the aver-
age for horizontal velocity components. For consistency, the same is done for the advective
fluxes over horizontal faces in forms AU ,T and AR,T , whereas upwinding is used for the
transported species denoted by Rup [1].

Remark 4 (Riemann solvers): Fluxes over lateral faces are much more critical for the
stability of the discretization than those over horizontal faces. For that reason, normal
fluxes Ĉh, Ĉu, and ĈR must be computed by solving a Riemann problem in a coupled
way [1, 51]. A number of different Riemann solvers are available for that with different
characteristics in terms of computational cost, numerical diffusion, etc. The simplest choice
that guarantees stability of the method is the Lax–Friedrichs Riemann solver that approx-
imates a normal flux C(c) · n by

Ĉ(c) = {|C(c) · n|}+ |λ̂|
2 [[c]] · n ,

where λ̂ is the largest (absolute) eigenvalue of the Jacobian of the primitive numerical
fluxes (3.1). Other choices include the Riemann solver of Roe [129] or the HLLC solver [151].

Remark 5 (Boundary values): On domain boundaries, values for unknowns Hbdr, Ubdr,
Rbdr are defined as given boundary data, where available (cf. (2.6)), or taken from the
interior otherwise. This way, given boundary conditions are imposed weakly. On lateral
boundaries, one can also apply the Riemann solver formulation using normal fluxes Ĉh, Ĉu,
and ĈR (see Remark 4) with values from the interior and the specified boundary data, thus
enforcing boundary conditions somewhat similarly to the penalty method [9].

The remaining step in the spatial discretization procedure is to choose bases for the dG
spaces Vd, X , Z and to represent all variables in terms of these bases. For the barotropic
system restricted to a vertical slice the entire discretization procedure is described in full
detail in [Pp1]. A proof of discrete stability for the three-dimensional barotropic system was
done by Aizinger [1] and Aizinger and Dawson [7] and was extended to a coupled setting
(see Section 3.5) in [P8]. Numerical experiments (see e. g., [P8, 1, 6, 7, 51]) indicated for
k > 0 order of convergence k + 1 for the water height and horizontal velocity components
and order k for the vertical velocity component. However, to our knowledge, no a priori
error analysis for that system exists to substantiate this.

21

3 The discontinuous Galerkin method

For the discretization in time, a semi-implicit time-stepping algorithm is employed. It
is based on time-explicit strong stability-preserving (SSP) Runge–Kutta methods up to
third order [42, 72, 73] that preserve the total variation diminishing13 (TVD) property
of the space discretization with a time-implicit treatment of vertical diffusion terms to
overcome the quadratic time-step limitation of vertical eddy viscosity/diffusivity [9]. The
linear system for vertical diffusion terms is solved once at the end of each time-step, thus
applying the diffusion operator as a kind of correction for the advective solution.

3.4 LDG discretization of saturated groundwater flow
The area of numerical modeling for groundwater flow enjoys a great deal of attention,
with a multitude of studies on development and analysis of new discretization techniques,
including discontinuous Galerkin methods. For an overview of the wide range of activities
refer to the review by Di Pietro and Vohralik [57].

A very detailed description of our discretization procedure for time-dependent diffusion
equations using the local discontinuous Galerkin method in two spatial dimensions all the
way to the linear system of equations is given in [P1], and a more rigorous presentation in
the context of a coupled three-dimensional model can be found in [P8]. The most important
parts of this procedure are reproduced in the following.

The first step in an LDG discretization is to rewrite the second order operator by intro-
ducing specific discharge q̃ as an auxiliary unknown and transforming problem (2.13) into
a mixed formulation with corresponding changes to boundary conditions

∂th̃+ ∇ · q̃ = F̃ in (t0, tend)× Ω̃ ,

D̃−1
q̃ + ∇h̃ = 0 in (t0, tend)× Ω̃ ,

h̃ = h̃D on (t0, tend)× ∂Ω̃D ,

q̃ · ñ = q̃N on (t0, tend)× ∂Ω̃N ,

h̃ = h̃0 in {t0} × Ω̃ ,

where we have divided by the specific storage S0 and replaced hydraulic conductivity and
right hand side by D̃ := K̃/S0 and F̃ := W̃0/S0, for simplicity.14

Multiplying with smooth test functions δ̃, ϕ̃ and integrating by parts over element T ∈
T∆(Ω̃) yields the weak formulation(

∂th̃, δ̃
)
T
−
(
q̃ ·∇, δ̃

)
T

+
〈
q̃ · ñ, δ̃

〉
∂T

=
(
F̃ , δ̃

)
T
,(

D̃−1
q̃, ϕ̃

)
T
−
(
h̃∇, ϕ̃

)
T

+
〈
h̃ ñ, ϕ̃

〉
∂T

= 0 ,

which is well-defined for h̃, δ̃ ∈ H1(Ω̃), q̃, ϕ̃ ∈ [H1(Ω̃)]3, and for a. e. t ∈ [t0, tend]. Next,
we approximate the solution to the weak problem by functions from finite-dimensional

13Sometimes also termed total variation bounded (TVB).
14There is some flexibility in placing the diffusion tensor D̃: Including it in the flux equation, as done here,

makes it easier to prove stability of the method in a coupled setting (see [P8]), while including it in the
first equation can simplify the implementation (cf. [P1]). One can also symmetrically split the tensor
between both equations to obtain a symmetric formulation.

22

3.4 LDG discretization of saturated groundwater flow

dG spaces, choose suitable numerical fluxes across element boundaries, and incorporate
boundary conditions (2.13b)–(2.13c) to obtain the semi-discrete problem:

Seek (H̃(t), Q̃(t)) ∈ P1
k(T∆(Ω̃)) × P3

k(T∆(Ω̃)) such that, for all T ∈ T∆(Ω̃), the following
holds for a. e. t ∈ [t0, tend] and for all (δ̃, ϕ̃) ∈ P1

k(T∆(Ω̃))× P3
k(T∆(Ω̃)):(

∂tH̃, δ̃
)
T

+ Ẽ
H̃,T

(Q̃, δ̃) + Λ̃
H̃,T

(H̃, δ̃) =
(
F̃ , δ̃

)
T
, (3.6a)(

D̃−1
Q̃, ϕ̃

)
T

+ Ẽ
Q̃,T

(H̃, ϕ̃) = 0 (3.6b)

with

Ẽ
H̃,T

(Q̃, δ̃) := −
(
Q̃ ·∇, δ̃

)
T

+
∑

γ∈Ĩint,T

〈{∣∣∣Q̃∣∣∣} · ñ, δ̃〉
γ

+
∑

γ∈ĨD,T

〈
Q̃ · ñ, δ̃

〉
γ

+
∑

γ∈ĨN,T

〈
q̃N, δ̃

〉
γ
,

Ẽ
Q̃,T

(H̃, ϕ̃) := −
(
H̃ ∇, ϕ̃

)
T

+
∑

γ∈Ĩint,T

〈{∣∣∣H̃∣∣∣} ñ, ϕ̃〉
γ

+
∑

γ∈ĨD,T

〈
h̃D ñ, ϕ̃

〉
γ

+
∑

γ∈ĨN,T

〈
H̃ ñ, ϕ̃

〉
γ
,

Λ̃
H̃,T

(H̃, δ̃) :=
∑

γ∈Ĩint,T

η

∆γ

〈[[
H̃
]]
· ñ, δ̃

〉
γ

+
∑

γ∈ĨD,T

η

∆γ

〈
H̃ − h̃D, δ̃

〉
γ
.

Here, the penalty terms in Λ̃
H̃

weakly enforce continuity of the hydraulic head across element
boundaries and are required to ensure the full rank of the system in the absence of the time
derivative [128, Lemma 2.15] with penalty parameter η > 0 and ∆γ the diameter of face γ.
Due to the isotropic nature of the diffusion operator, averaging of hydraulic head and specific
discharge on interior faces is the natural choice for the approximation of numerical fluxes.

This element-local formulation is often easier to read and better suited for implementa-
tion. For analyis purposes, it is usually written as a global formulation by summing over all
elements T ∈ T∆(Ω̃) introducing only few formal changes to the terms above: A sum over
all elements in front of element-integration terms, sums over element-local index sets Ĩ∗,T
replaced by their global counterparts Ĩ∗, and jumps of the test functions introduced in the
integration terms over interior faces.

The remaining step in the spatial discretization procedure is to introduce a local ba-
sis {φi,T } for the ansatz space with support only on one element T ∈ T∆(Ω̃) such that

Pdk(T∆(Ω̃)) =
⋃

T∈T∆(Ω̃)

span {φi,T }i∈{1,...,N}

with N the number of local basis functions. Representing H̃, Q̃ in terms of the local basis,

H̃(t, x, y, z)|T =:
N∑
i=1

H̃i,T (t)φi,T (x, y, z) , Q̃(t, x, y, z)|T =:
N∑

i,j,k=1

Q̃
1(t)φi,T (x, y, z)

Q̃2(t)φj,T (x, y, z)
Q̃3(t)φk,T (x, y, z)

and testing (3.6) with all basis functions yields a linear system of equations of the form

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 M

︸ ︷︷ ︸

=:W̃

0
0
0

∂H̃(t)

+

M̃ 0 0 Ã1

Q̃(t)
0 M̃ 0 Ã2

Q̃(t)
0 0 M̃ Ã3

Q̃(t)
Ã1
H̃ Ã2

H̃ Ã3
H̃ Ãη

︸ ︷︷ ︸

=:Ã(t)

Q̃1(t)
Q̃2(t)
Q̃3(t)
H̃(t)

︸ ︷︷ ︸

=:Ỹ (t)

= F̃ (t) (3.7)

23

3 The discontinuous Galerkin method

with representation vectors (for d ∈ {1, 2, 3})

Q̃d(t) :=
(
Q̃dT1,1, . . . , Q̃

d
T1,N , Q̃

d
T2,1, . . .

)
, H̃ :=

(
H̃T1,1, . . . , H̃T1,N , H̃T2,1, . . .

)
.

Here, M̃ is the block-diagonal15 mass-matrix, Ãd

∗ are sparse block-matrices, Ãη is a block-
matrix containing the penalty terms from Λ̃

H̃
, and F̃ contains the right hand side and

boundary data. This is presented in more detail with extensive description of all matrix
entries for a two-dimensional domain in [P1].

A priori error analysis yields min{k̂, k + 1} as convergence order estimates for the semi-
discrete scheme with k̂ and k representing the approximation orders for H̃ and Q̃, respec-
tively [10, 131, 132]. In numerical experiments, orders of convergence were obtained as k+1
for H̃ and k for Q̃ when k ≥ 1, and the problem is linear [P1, P8].

To complete the discretization procedure, we choose an implicit Euler method to discretize
system (3.7) in time. Let t0 = t̃0 < t̃1 < · · · < tend be a not necessarily equidistant
decomposition of the time interval [t0, tend], and let ∆t̃n := t̃n+1 − t̃n denote the time step
size, then one step of the time discretization is formulated as(

W̃ + ∆t̃n Ã
(
t̃n+1

))
Ỹ
(
t̃n+1

)
= W̃ Ỹ

(
t̃n
)

+ ∆t̃n F̃
(
t̃n+1

)
.

To make efficient use of high order dG approximations, higher order time discretizations
must be employed instead such as diagonally implicit Runge–Kutta (DIRK) methods that
are presented and used together with a hybridized method in [P6].

3.5 Coupled model
When coupling the models for free-surface and subsurface flows one of the biggest challenges
is the difference in time scales. At the surface, the water velocity is in the range of meters per
second with surface waves often traveling at substantially higher speeds while the subsurface
flow velocity is in the range of decimeters per day. Additionally, the subsurface flow model
is diffusion-dominated and must be discretized implicitly in time (cf. Section 3.4) to avoid
extreme restrictions on the time step size. In contrast to that, the free-surface flow model
uses a semi-implicit time-stepping scheme (cf. Section 3.3), and, consequently, the free-
surface flow time step ∆t must be significantly smaller than the one for the subsurface
problem ∆t̃. This difference in time-stepping methods must be accounted for to ensure the
coupling is mass conservative.

For that, a so-called non-simple or complex boundary is used, which memorizes the flux
from Ω̃ into Ω(t) across the interior boundary and vice versa. Since ∆t/∆t̃ < 1, the flux
from Ω(t) to Ω̃ has to be time averaged to filter out fast pressure changes in the interior
boundary condition (2.14b), yielding

H̃|
∂Ω̃top

(
t̃n+1

)
= 1

∆t̃

∫ t̃n+1

t̃n

(
Ξ(t) + Uxy(t) ·Uxy(t)

2 g

) ∣∣∣
∂Ωbot

dt . (3.8)

This time-averaging can be approximated by a summated trapezoidal rule. For the normal
flux from Ω̃ to Ω(t) (cf. equation (2.14a)), we rely on the values from the latest subsurface
time step.
15When using an orthogonal basis, the mass-matrix is simply a diagonal matrix.

24

3.6 Slope limiting

The necessary changes to the discrete models of Sections 3.3 and 3.4 are minimal: In
the free surface model, an additional term is introduced in forms AU ,T , AW,T , and EQ,T
(for baroclinic simulations also in AR,T) of system (3.5) that replaces the usual zero normal
flow boundary condition specified in equation (2.6a). For the groundwater flow model
(cf. system (3.6)), a top-boundary term in the same form as for Dirichlet boundary data h̃D
is added in forms Ẽ

Q̃
and Λ̃

H̃,T
with the averaged head from equation (3.8).

For discrete stability, consider the barotropic free surface system (i. e., (3.5a)–(3.5d) with-
out baroclinic pressure correction p), omit the Coriolis term on the right-hand side, and
rescale the system so that g = 1. Denote by ∂Ωi lateral inflow boundaries, and let ξ̂, ûxy
be prescribed boundary values. Using a Lax-Friedrichs-type Riemann solver (see Remark 4
in Section 3.3) and introducing an additional mesh penalty term 1

2∂t(Ξs − Ξ)Uxy in equa-
tion (3.5b) that penalizes the difference between the computed (discontinuous) free surface
elevation field and the smoothed (continuous) free surface (see Remark 1 in Section 3.3),
the following theorem holds [P8]:

Theorem 3.1 (Discrete Stability). Let the free surface elevation of the smoothed mesh
satisfy Ξs|Π(∂Ωi) = ξi, and let Ξ, δH ∈ P1

2k(T∆(Ωxy)), Uxy,ϕu ∈ P2
k(T∆(Ω(t))), W, δw ∈

P1
2k(T∆(Ω(t))), Q,Φ ∈ [P3

k(T∆(Ω(t)))]2, H̃, δ̃ ∈ P1
k̂
(T∆(Ω̃)), and Q̃, ϕ̃ ∈ P3

k̄
(T∆(Ω̃)) for some

k, k̄, k̂ ≥ 0, a. e. t ∈ [t0, tend], and all T ∈ T∆(Ω(t)), T̃ ∈ T∆(Ω̃). Then scheme (3.5a)–(3.5d),
(3.6) is stable in the following sense:

∂t

{
‖Ξ‖2Ωxy

+ ‖Uxy‖2Ω(t) +
∥∥∥H̃∥∥∥2

Ω̃

}
+
∥∥∥√D−1Q

∥∥∥2

Ω(t)
+

∑
γ∈Iint

‖[[[Uxy]]]‖2γ +
∥∥∥∥∥
√

D̃−1
Q̃

∥∥∥∥∥
2

Ω̃

+
∑
γ∈Ĩint

η

∆γ

∥∥∥[[H̃]]∥∥∥2

γ
+
∑
γ∈ĨD

η

∆γ

∥∥∥H̃∥∥∥2

γ
≤ C(Ct,Ω(t), Ω̃,D, D̃, η,Fu, F̃ , zb, ξ̂, ûxy, q̃N,∆) ,

where Ct is the constant from the discrete trace inequality. �
The corresponding discretization procedure and proof of the theorem is presented in

[P8] including numerical experiments and numerical convergence studies carried out in the
framework of our toolbox FESTUNG (see Section 5.1). Implementation aspects of the
coupled model are discussed in [Pp1].

3.6 Slope limiting
Slope and flux limiters are widely used techniques to enforce the discrete maximum principle
in finite volume and discontinuous Galerkin methods for conservation laws. In the context of
dG approximations in space and explicit TVD time stepping schemes, slope limiters exploit
the fact that the lowest-order (piecewise constant) part of a dG solution is guaranteed to
preserve the monotonicity of the solution and produce no spurious extrema, thus yielding
admissible maximum and minimum values for the higher-order solution. While flux limiters
change numerical fluxes, slope limiters modify the solution to meet these requirements
in chosen control points [108]. The challenge in formulating a limiter lies in effectively
detecting and eliminating violations of these extrema while preserving the approximation
order in smooth regions and keeping the solution free of spurious side effects such as excessive
numerical diffusion.

With the classical minmod limiter of Cockburn and Shu [42, 45] as a starting point, a num-
ber of different limiting approaches for linear dG solutions were introduced and improved

25

3 The discontinuous Galerkin method

xi xc

T

N (xi)

Figure 3.3: Elements in the neighbourhood N (xi) := {T ∈ T∆(Ωxy) : xi ∈ T} of a ver-
tex xi ∈ T with corresponding centroids from which admissible minimum and
maximum values are determined

over the course of the years [87, 104, 105]. The underlying idea is to locally modify the
solution on an element so that the maximum principle is fulfilled in certain control points
without affecting local mass conservation. For that, the class of vertex-based slope limiters,
where vertices of the computational mesh are used as control points, imposes less restrictive
constraints and thus proved to be superior compared to algorithms where edge / face mid-
points are employed. Most notable is the modification of the established Barth-Jespersen
(edge midpoint) limiter [21] to a vertex based formulation for dG methods by Kuzmin [107],
and an equivalent formulation as a local constrained optimization problem with application
to three-dimensional shallow-water flow by Aizinger [2]. These vertex-based limiters can be
extended to work on higher order (polynomial degree 2 or higher) dG solutions in a hier-
archical manner [107, 109, 110] yielding a method that preserves as much information as
possible in contrast to the classical approach of applying linear limiters where needed and
discarding higher-order parts of the solution [119].

The following illustrates the limiting procedure for a solution c∆(x, y) ∈ P1
k(T) defined on

an element T from the partition of a two-dimensional domain T∆(Ωxy) with a comprehensive
description given in [P3]. For three-dimensional domains, the algorithm is the same.

The goal of linear vertex-based limiters is to determine the maximum admissible slope
on all elements T ∈ T∆(Ωxy) for a linear reconstruction of the form

c∆(x) = cc + αT (∇c)c (x− xc) , (3.9)

where cc and (∇c)c are the values of the unconstrained solution and its gradient in the
centroid xc := 1

|T |
∫
T x dx, respectively. The correction factor αT ∈ [0, 1] is chosen such

that the above reconstruction is bounded in all vertices xi ∈ T by the minimum and
maximum centroid values of all elements containing xi, i. e.,

cmin
i ≤ c∆(xi) ≤ cmax

i for all vertices xi ∈ T ,
where cmin

i := min
T ′∈N (xi)

cc|T ′ and cmax
i := max

T ′∈N (xi)
cc|T ′

(3.10)

are the minimum and maximum centroid values of all elements in the neighbourhood N (xi)
of vertex xi ∈ T (see Figure 3.3 for an illustration). The correction factor αT is defined

26

3.6 Slope limiting

as [107]

αT := min
xi∈T

(cmax
i − cc)/(ci − cc) if ci > cmax

i

1 if cmin
i ≤ ci ≤ cmax

i

(cmin
i − cc)/(ci − cc) if ci < cmin

i

 , (3.11)

where ci is the unconstrained linear reconstruction in vertex xi.
For higher polynomial approximation orders this means that the solution is reduced to

a linear reconstruction on elements violating the maximum principle. Yang and Wang [167,
168] described an edge/face midpoint limiting procedure that keeps higher order terms and
multiplies all derivatives of order l by a common correction factor α(l)

T . Kuzmin [107, 109,
110] incorporated this idea into the framework of vertex-based limiters and described the
resulting algorithm for quadratic approximations. The first closed-form expression of this
limiting procedure for arbitrary-order discretizations was given in [P3] and is briefly outlined
in the following.

Let Al := {a ∈ N2
0 : |a| = l} be the set of all two-dimensional multi-indices a := (a1, a2)T

of order l, and let k be the polynomial approximation order of the dG discretization. Using
some standard multi-index notation

|a| = a1 + a2 , a! = a1! a2! , xa = xa1 ya2 , ∂a = ∂a1
x ∂a2

y ,

we consider the Taylor series expansion of c∆ around centroid xc on element T ∈ T∆(Ωxy)

c∆(x) =
∑

0≤|a|≤k
(∂ac)c

(x− xc)a

a! .

Then, correction factors α(l)
T for each order 0 < l ≤ k are determined using linear recon-

structions for all partial derivatives of order l − 1 in vertices xi := (xi, yi)T ∈ T

ca,i := ca + ca+(1,0) (xi − xc) + ca+(0,1) (yi − yc) ∀a ∈ Al−1 , (3.12)

where we abbreviated the partial derivatives in the centroid by ca := (∂ac)c. Comput-
ing α

(l)
a,T for each derivative using the expression in equation (3.11) yields the correction

factor

α
(l)
T = min

a∈Al−1
α

(l)
a,T , with α

(l)
a,T := min

xi∈T

(cmax
a,i − ca)/(ca,i − ca) if ca,i > cmax

a,i

1 if cmin
a,i ≤ ca,i ≤ cmax

a,i

(cmin
a,i − ca)/(ca,i − ca) if ca,i < cmin

a,i

 ,
where cmax

a,i , cmin
a,i are defined as in (3.10). Recognizing that lower-order derivatives are

typically smoother than higher-order derivatives, lower-order terms should not be limited
stronger than any higher orders. Beginning with the highest-order derivatives, the limited
solution becomes

c∆(x) = cc +
∑

1≤|a|≤k
α

(|a|)
T ca

(x− xc)a

a! with α
(l)
T := max

l≤j≤k
α

(j)
T ∀ 0 < l ≤ k .

However, this approach does not produce solutions that satisfy the maximum principle
in all cases. In particular, for jumps in the solution, the assumption about the smoothness
of lower-order derivatives does not always hold possibly causing problems in applications
where compliance to these bounds is mandatory. For that reason, [P3] suggests a stricter
version of the hierarchical vertex-based limiter that modifies two key components of the
procedure:

27

3 The discontinuous Galerkin method

1. Replace the linear reconstruction in (3.12) by a full reconstruction of the derivatives

ca,i :=
∑

0≤|b|≤k−l
ca+b

(x− xc)b

b! .

2. Instead of the hierarchical restriction of correction factors, begin with the highest-
order derivatives and apply coefficients immediately to all terms involved yielding

c∆(x) = cc +
∑

1≤|a|≤k

(
α

(1)
T · · ·α

(|a|)
T

)
ca

(x− xc)a

a! .

For the implementation of slope limiters, c∆ is usually represented in a Taylor basis where
degrees of freedom coincide with partial derivatives, and thus correction factors can be di-
rectly applied (see [P3] for details). In the case of a non-orthogonal Taylor basis (e. g., on
triangular meshes), the mass matrix is non-diagonal and introduces an implicit coupling of
second or higher-order degrees of freedom in time-dependent problems [109]. This is also the
case when using an orthogonal modal basis for computations, where the necessary change to
a Taylor-basis representation before applying the slope limiter introduces these dependen-
cies. As a countermeasure, Kuzmin [109] suggested to apply the slope limiter not only to
the new solution at a time step but also to the vector of time derivatives (i. e., the right hand
side in the explicit time-stepping algorithm). Combined with a lumping of the mass matrix
in the time discretization and a balancing correction term added to the right hand side, spu-
rious dependencies are filtered out, and the results greatly improve [109]. This eliminates
the deficiencies of higher-order limiting procedures previously observed [119]. A descrip-
tion of this procedure for arbitrary basis representations and numerical experiments can be
found in [P3].

For anisotropic solutions with strong directional derivatives, the uniform choice of correc-
tion factors for all derivatives of the same order is not optimal. Instead, a limiting procedure
should discern these features and incorporate them into the changes applied to the solution.
That is, considering the limited linear solution in equation (3.9), the correction factor αT
is replaced by factors for each directional derivative

c∆ := cc + αx c(1,0) (x− xc) + αy c(0,1) (y − yc) . (3.13)

May and Berger [118] described a way to choose αx, αy ∈ [0, 1] based on solving small linear
programming problems that minimize changes to the solution subject to the constraints
in equation (3.10). To overcome the computational cost associated with this optimization-
based algorithm, [P5] proposed a closed-form expression for anisotropic slope limiting. The
underlying idea is the following: Without loss of generality, start with the x-direction and
add the prelimited x-variation to the mean value to obtain

ĉ∆(x) = cc + αx c(1,0) (x− xc) ,

where correction factor αx is chosen such that inequality (3.10) is fulfilled for ĉ∆(x). Thus,
a modified version of (3.11) is used to compute αx from the x-variation

αx := min
xi∈T

cmax

i −cc
c(1,0)(xi−xc) if c(1,0) >

cmax
i −cc
xi−xc

1 if cmin
i −cc
xi−xc

≤ c(1,0) ≤
cmax

i −cc
xi−xc

cmin
i −cc

c(1,0)(xi−xc) if c(1,0) <
cmin

i −cc
xi−xc

 .

28

3.7 Locally filtered transport

Adding the y-variation to ĉ∆ multiplied by the corresponding correction factor αy enforc-
ing (3.10) yields the limited solution in equation (3.13) with αy computed as

αy := min
xi∈T

cmax

i −ĉ∆(xc)
c(0,1)(yi−yc) if c(0,1) >

cmax
i −ĉ∆(xc)
yi−yc

1 if cmin
i −ĉ∆(xc)
yi−yc

≤ c(0,1) ≤
cmax

i −ĉ∆(xc)
yi−yc

cmin
i −ĉ∆(xc)
c(0,1)(yi−yc) if c(0,1) <

cmin
i −ĉ∆(xc)
yi−yc

 .

Since anisotropies of the solution are not necessarily aligned with the axes of the Cartesian
coordinate system, and the order of the sequential limiting procedure potentially affects the
outcome of the algorithm, this approach has been generalized to an arbitrary frame of
reference: Utilizing a coordinate transform, the local coordinate system is rotated around
the centroid xc by an angle ϑ to align it with a pair of orthonormal direction vectors ξ :=
(cosϑ,− sinϑ)T and η := (sinϑ, cosϑ)T.

By that, the anisotropic limiting procedure can be carried out for correction factors αξ
and αη corresponding to the directional derivatives. Aligning the local coordinate system
with the reconstructed gradient of the solution, thus limiting in the direction of and per-
pendicular to the solution gradient separately, proved to be a sensible choice. For a detailed
description of this generalization and numerical examples, including a comparison to the
optimization-based anisotropic limiter, refer to [P5].

3.7 Locally filtered transport
A common application of circulation models, e. g., based on the two-dimensional or three-
dimensional shallow water equations, is to use the computed hydrodynamics as input for
multi-component transport–reaction models to simulate ecosystem evolution or pollutant
dispersion. In such systems, many of the physical, chemical, and biological processes in-
volved take place on highly-localized spatial and temporal scales, while outside of these
regions of interest transported constituents remain at quasi-uniform concentration levels
or are completely absent. However, in standard transport models the treatment of advec-
tive transport terms induces the same computational cost everywhere irrespective of the
fact that this does not change the values of unknowns in large parts of the computational
domain.

The Locally Filtered Transport (LFT) scheme proposed in [P7] offers a way to adaptively
turn on / off the computation of discrete transport terms, thus decreasing computational
work significantly while remaining locally mass conservative and maintaining a similar level
of accuracy. It is based on the work by Hodges [85] for structured finite volume methods
but avoids its unconventional and computationally expensive mass transport algorithm.
Instead, in the context of dG methods, it comes at almost no additional cost as it can make
use of the minimum and maximum values computed for vertex based slope-limiters (see
Section 3.6). This allows to derive lists of active and disabled elements depending on the
difference of these maximum and minimum values being larger than a chosen threshold in
each element’s neighborhood.

In [P7], the performance of the method is demonstrated for the NPZ ecosystem model of
nitrogen, phytoplankton, and zooplankton dynamics within our FESTUNG framework (see
Section 5.1). However, the method can easily be extended to other numerical methods and
applications.

29

High performance computing aspects
Chapter 4

4.1 Computing architectures
While a detailed discussion of modern processors is clearly out of scope, this section is
intended to give a rough overview of the features and characteristics of current computing
architectures most relevant to the applications in this thesis. More details on architectures
and modern processors with a focus on scientific computing applications are presented
intelligibly in the book by Hager and Wellein [75].

Today’s processors still adhere to the original principles of the stored-program computer
architecture, which became colloquially known as the von Neumann architecture following
John von Neumann’s design proposal in his First Draft of a Report on the EDVAC [121] from
1945. The logical design (cf. Figure 4.1) is divided into a control unit, arithmetic logic units
(ALU), memory, and input/output (I/O) parts with the distinguishing property, compared
to earlier designs, that instructions are data that are stored in memory. The combination
of ALU and control unit (responsible for reading and executing instructions from memory)
together with interfaces to I/O and memory (usually hierarchically structured, with caches)
are referred to as the Central Processing Unit (CPU) [75, 148].

CPU

Control
Unit

Arithmetic
Logic Unit

Memory

Input

Output

Figure 4.1: Schematic of the stored-program computer architecture (adapted from [75,
Fig. 1.1], [148, Abb. 1.4])

Modern CPUs are microprocessors with sophisticated implementations of these original
components: Control units are capable of superscalar1, pipelined2, and out-of-order3 ex-
ecution of instructions; highly optimized integer and floating point arithmetic units offer
support for vectorized SIMD (Single Instruction, Multiple Data) instructions; a hierarchy

1Dispatch multiple instructions to different execution units at the same time
2Split instructions in multiple phases to allow partial overlapping of instructions in the same execution unit
3Rearrange the order of instructions to avoid idle cycles

4 High performance computing aspects

of memory levels is used starting from a large but comparatively slow main memory via
(typically three) levels of increasingly faster and smaller caches up to few very fast regis-
ters, where operands of instructions have to reside during computation; advanced memory
management units are responsible for coherence of these caches and capable of (speculative)
prefetching of data from lower levels. Moreover, all computers today possess some form of
parallelism, which appears on multiple levels:
• On the arithmetic level, in the form of SIMD instructions allowing to apply the same

operation to multiple operands at the same time;
• on the instruction level, independent instructions (with regard to their inputs and

outputs) may be executed in parallel by dispatching them to different execution units
(e. g., multiple ALUs within one core);
• on the chip level, as multicore processors, where several processors (“cores”) are placed

on a single chip often sharing some components, e. g., cache levels or memory and I/O
interfaces;
• on the node level, where multiple (multicore) processors share resources such as mem-

ory4 and network connectivity, potentially accompanied by accelerator cards to offload
computations;
• on the system level with multiple nodes connected by a high-speed interconnect.

At the time of writing, processors by Intel and AMD using the AMD64 instruction set5

established themselves as the quasi-standard for desktop computers and servers. The same is
largely true in the world of high performance computing (HPC); however, microprocessors
based on other Instruction Set Architectures (ISA) time and again feature prominently
in the list of the fastest supercomputers (e. g., IBM Power, SPARC64) [147]. Relatively
recent is the appearance of architectures from energy-constrained scenarios (mobile) such
as ARM processors. Often, systems using these architectures are characterized by a larger
number of light-weight (and often energy-efficient) processors combined into a single chip.
For example, the Post-K supercomputer will use ARM-based CPUs [115], and the Astra
supercomputer was the first ARM supercomputer to enter the Top500 [144]. A number of
different computing platforms are compared with respect to the performance of our regional
ocean model in [P2], and evaluations of the same model on low-power ARM processors are
the subject of [P4] and [C1].

The use of co-processors (also called accelerators, mostly in the form of graphics cards)
is a popular choice in HPC systems to offload compute-intensive parts while the outer algo-
rithm and I/O operations are executed on regular CPUs. Such Graphics Processing Units
(GPUs) feature a many-core architecture designed to handle data-parallel and throughput-
intensive workloads, which is why they provide a large number of arithmetic units along with
relatively few control units and very fast memory. This makes them particularly well-suited
to applications that make heavy use of linear algebra operations on large data sets [143],
but algorithms with unstructured data access patterns (e. g., due to unstructured meshes)
or frequent branching hardly benefit from such co-processors [68, 148]. Moreover, GPUs

4In some multiprocessor computers or sometimes even multicore processors, all available memory is only
logically shared but is, in fact distributed among the processors dividing it into multiple NUMA (Non-
Uniform Memory Access) domains [75]. In NUMA architectures, access to data in remote sections of
the memory must pass through a dedicated interconnect or bus, which reduces memory bandwidth and
increases latency.

5Often named x86 64 due to the x86 instruction set of its predecessor

32

4.2 Node-level performance

require the programmer to employ a completely different programming model6 and thus
make it necessary to rewrite large code parts of existing applications.

A similar architecture is used in Intel’s Xeon Phi processors that were originally offered
as co-processors and evolved to stand-alone manycore processors in their latest genera-
tion before their discontinuation. In contrast to GPUs, they consist of a large number of
x86-compatible cores and as such are capable of running codes using traditional parallel
programming models and languages [62, 82]. However, to make optimal use of Xeon Phi
processors, the algorithm must be suitable for massive parallelism and vectorized instruc-
tions, which once again has to be provided for by the programmer, thus defeating one of
the original advantages of Xeon Phi processors over GPUs [62]. This need for a specific
adaptation was also observed when evaluating the performance of our regional ocean model
UTBEST3D (see Section 5.2) on a broad range of different architectures including Intel
Xeon Phi co-processors in [P2].

4.2 Node-level performance
A program or implementation of an algorithm is considered to be fast or efficient when
it delivers an acceptable level of performance according to some metric. The established
metric for performance

P = W

T
(4.1)

is the ratio between the amount of conducted work W and the required time T [75, 76].
While time typically refers to execution or wall-clock time,7 a greater variety of choices
exists to quantify the work conducted: In numerical simulations, this is typically related
to the number of floating-point operations (FLOP), but one could also be interested in the
count of iterations of a loop or the number of higher-level update operations executed.8 In
the context of this work, we are mainly interested in time-to-solution or energy-to-solution
measurements, either for a certain part of the total algorithm or the total program run (up
to a selected end time), which means W is equivalent to one pass through the corresponding
part of the program. Nonetheless, FLOP are a useful metric when evaluating the efficiency
of a program in regard to the capability of an architecture.

The maximum number of floating-point operations that can be carried out per second is
a hardware-specific value and referred to as peak performance Ppeak [FLOP/s], determined
by multiplying the number of processing units (number of cores) with the clock frequency
(number of clock cycles per second) and the number of floating point operations that can be
carried out per clock cycle by a single core.9 A program that reaches a significant fraction
of this value is considered to be efficient – providing that the operations executed actually
comprise useful work. However, performance is often limited by other factors: On the one
hand, FLOP require data to operate on, which has to be loaded from and stored to memory.

6For example, NVIDIA’s CUDA toolkit (https://developer.nvidia.com/cuda-toolkit) or standards
such as OpenCL (https://www.khronos.org/opencl/) or OpenACC (https://www.openacc.org/).

7In some applications or investigations, other units such as number of clock cycles could be useful as well.
8For example, in climate simulations, a typical metric is the number of simulated years per day.
9Typically, more than one floating-point operation can be executed per clock cycle when using SIMD or

fused multiply-add (FMA) instructions. One also has to distinguish between single precision and double
precision operations, of which the latter is the more relevant for most scientific computing applications.

33

https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://www.openacc.org/

4 High performance computing aspects

On the other hand, there is always some overhead involved due to branching, integer arith-
metic (e. g., indexing of memory locations), or I/O operations, all of which should be kept
at the minimum amount possible. Each load/store-operation involves some latency, and the
memory interface has a hardware-specific memory bandwidth b [Byte/s] that gives the maxi-
mum amount of data that can be transfered per second. For linear memory access patterns,
latency can often be hidden by overlapping data transfer with useful instructions [75]. This
is accomplished using prefetchers and speculative execution built into modern processors.
Thus, an algorithm that executes a relatively small amount of floating-point operations on
a large data set will usually saturate the memory bandwidth before reaching the theoretical
peak performance. It is useful to determine the ratios between required data transfer vol-
ume V [Byte] and arithmetic instructions W [FLOP] on the one side and between memory
bandwidth and peak performance on the other yielding

code balance Bc = V

W
[Byte/FLOP] and machine balance Bm = b

Ppeak
[Byte/FLOP] .

If Bc ≥ Bm, performance is expected to be limited by the memory bandwidth of the
hardware instead of the peak performance [75]. With increasing number of cores in modern
processors and the moderate grow of the memory bandwidth shared by those, machine
balance is presumed to decrease further and more applications will be limited by memory
bandwidth [75].

Using these machine and code characteristics, the Roofline performance model [162] even
allows to make a prediction of the (theoretically) achievable maximum performance

Pmax = min {Ppeak, I · b} ,

where I = 1/Bc is called computational intensity [76]. Better predictions are possible
when more sophisticated performance models are used such as the Execution-Cache-Memory
(ECM) model that takes the cache hierarchy into account [146]. However, applying such
a model is a time-consuming task only feasible for few compute-intensive loops in a program.

Generally, shorter time-to-solution can be achieved in two ways: By improving the re-
source utilization until either memory bandwidth or peak performance are the bottleneck,
or by adding more processors and sharing the work among them. While the latter comes
with its own set of challenges (this is the topic of the next section), a moderate level of
parallelization must also be taken into account when looking at resource utilization. In
today’s processors, the available memory bandwidth is typically shared by some or all cores
of a multicore processor, and clock frequency may be adjusted depending on the type of in-
structions. Thus, it is useful to look at the performance of an application on a per-socket or
(more general) per-node level and aim at achieving a code balance that matches the machine
characteristics. This results in an iterative process, called node-level performance engineer-
ing that includes measuring performance for a suitable benchmark, identifying bottlenecks,
attempting to overcome these, and repeating from the beginning.

An analysis of the runtime distribution for our regional ocean model UTBEST3D (cf.
Section 5.2) is included in [P2] and node-level performance was looked at in the contex
of a KONWIHR-III10 project. It resulted in a significant reduction of branching overhead
while maintaining the flexibility of the implemented hierarchical model as described in [R1]
and presented in [C2].
10https://konwihr.fau.de

34

https://konwihr.fau.de

4.3 Parallelization and scalability

4.3 Parallelization and scalability
For decades, the performance of processors and thus applications was improved on the
hardware side by shrinking transistor sizes and increasing clock frequencies, which required
the use of higher voltages. This, in turn, increased the amount of required power and waste
heat, which depend quadratically on the voltage. Providing the power and dissipating the
heat became more and more of a problem, which led to hitting the peak clock frequency at
close to 4 GHz in the early 2000s [148]. Since then, manufacturers switched to increasing
the number of cores in multicore processors to further improve the speed of their processors
requiring performance-aware software developers to learn how to make use of those, i. e.,
how to identify and exploit parallelism in their programs.

Parallelization had already played an important role in scientific computing applications
for decades at that point due to the complexity of the problems considered: either time-
to-solution demands, i. e., obtaining results for a fixed problem size in a given amount
of time, or to overcome memory limitations when the problem size of interest exceeds
the available memory made it necessary to employ parallel programming techniques and
execute programs on multiple processors. In the first case, the work for a fixed problem
size is distributed among multiple processors, which is called strong scaling; the second case
involves increasing the problem size at the same time as more processors are used and is
refered to as weak scaling [75].

While parallelism is present at many levels in today’s computers (see Section 4.1), here we
restrict ourselves to gains and challenges when making use of multiple processing units, i. e.,
multiple cores within a node or multiple nodes. In general, a distinction is drawn between
two different parallelism concepts: Splitting different tasks of a larger problem into hetero-
geneous subtasks is called functional parallelism [75], which is common in coupled problems
such as climate models, where the different components (e. g., sea ice, land ice, ocean, at-
mosphere, etc.) are distributed to different processors and executed in parallel [71]. This
type of parallelism is connected to the programming paradigm MPMD (Multiple Program,
Multiple Data), as code and data are different in each parallel instance. In contrast to that,
when large amounts of data are processed in parallel using the same program with each
processor being responsible for different parts of that data, this is termed data parallelism
and represents the most common scenario in the context of scientific computing. This goes
hand in hand with the SPMD (Single Program, Multiple Data) programming paradigm,
where the same program is executed on all processors [75]. Both concepts can of course be
used in conjunction: functional subtasks themselves could be further split up using data
parallelism. Here, we concern ourselves only with SPMD parallelization.

On shared memory architectures (such as multicore CPUs or Intel Xeon Phi accelerators),
where multiple processors share the same address space and can access the same data, the
most common technique to write parallel programs is OpenMP [31], a compiler extension for
C/C++ and Fortran that provides directives to introduce parallel regions, e. g., to distribute
the iterations of a loop among multiple threads. In distributed memory computers, there is
no common address space, and communication between different processors must be done
explicitly, e. g., using message passing. The most popular choice for that is the Message
Passing Interface (MPI) [66], which equips programmers with a maximum amount of flex-
ibility to exchange data, synchronize the program flow, or to use I/O mechanisms, while
hiding the details of the underlying interconnect. As an alternative, Partitioned Global Ad-

35

4 High performance computing aspects

dress Space (PGAS) languages11 are an attempt to introduce a common global address space
for distributed memory computers, which gained some momentum with recent advances of
interconnect technology [92]. They provide a different parallel programming model than
MPI formulated around data dependencies and one-sided communication to hide commu-
nication overhead when obeying to an asynchronous data flow formulation [142].

Quantifying the benefit from parallelizing a program and executing it on more processors
requires suitable scalability metrics, for which we rely once again on the definitions given
by Hager and Wellein [75]. Consider a fixed problem size W with normalized serial run-
time T1 = 1 and assume it can be broken down into a fraction p that can be (perfectly)
parallelized and an inherently serial fraction s (e. g., due to data dependencies). Then serial
and parallel runtimes are given as

T1 = s+ p = 1 and TN = s+ p

N
,

where TN is the runtime for solving the problem on N processors. When executing the
program on a given number of processors N > 1, one of the most interesting results is the
performance gain compared to the serial program run, i. e., the speedup

SN = PN
P1

.

Using the performance metric in Equation (4.1) and above assumptions about serial and
parallel runtimes, we obtain

SN = T1
TN

= s+ p

s+ p
N

= 1
s+ 1−s

N

,

which is known as Amdahl’s Law [14]. Given a serial fraction s, it yields S∞ = 1/s as the
upper limit for the maximum speedup for N →∞.

Another common metric is parallel efficiency

ε = PN
N · P1

= SN
N

,

as a measure for the achieved fraction of an optimal (linear) speedup.
In practice, there is a number of factors besides inherently serial portions in an algorithm,

including communication overhead, load imbalance, bottlenecks (such as I/O bandwidth),
etc. that can limit scalability [75], some of which (e. g., communication overhead) can be-
come more pronounced for large processor counts. On the other hand, in certain cases,
there is even superlinear speedup for simple loops, e. g., when reducing the local problem
size on each processor leads to better cache usage and thus improves the node-level perfor-
mance [166]. However, more common are cases where using all cores of a multicore processor
leads to saturation of the memory bandwidth of the socket, and thus reducing the num-
ber of used processors (per socket) can actually improve performance [12]. Consequently,
parallel performance engineering is an iterative process similar to node-level performance
engineering that requires precise measurements and instrumentation of the performance for
different processor counts to obtain a good understanding of the resource utilization and
bottlenecks to eventually achieve optimal performance.
11For example: Unified Parallel C (UPC) [47], GASPI [65], or Coarrays in the Fortran 2008 standard [126].

36

4.3 Parallelization and scalability

In the context of this work, i. e., solving partial differential equations numerically, paral-
lelism is introduced in the form of domain decomposition, i. e., by splitting the computational
domain into parts that can be processed in parallel. When using mesh-based numerical
methods, such as dG methods, one can exploit the partitioning of the domain into mesh el-
ements and assign (connected) sets of elements to individual processes. This decomposition
can be done using different strategies, of which graph-based partitioning algorithms are the
most popular. For that, the computational mesh is transformed into its dual graph12, which
is then partitioned, e. g., using one of the algorithms provided in the widely-used library
METIS [99].

Figure 4.2: Schematic of domain decomposition for a two-dimensional mesh and two pro-
cesses: Every element and node belongs to exactly one process (elements with
blue lines and squared nodes belong to one process, and elements with red grid
and circle nodes belong to the other), and each process computes (and thus,
stores) only the data for its own mesh entities. Additionally, each process has
a layer of ghost elements (dotted) and ghost nodes from the other process that
are required to compute the numerical fluxes over edges. Arrows indicate the
element data that has to be communicated from one process to the other.

Discontinuous Galerkin methods are particularly well-suited for parallel computing that
relies on domain decomposition, as discussed in Section 3.1: For the spatial discretization,
the solution on a mesh element depends only on adjacent elements with a shared edge (2D)
or face (3D) via the numerical fluxes that connect both. This is implemented by introducing
a layer of copies of the adjacent elements from neighboring processes around each partition –
called ghost layer – making all required data available locally (see Figure 4.2). Consequently,
each processor has to communicate only with its direct neighbors, e. g., once per time step, to
exchange the values in the ghost layers. The number of neighbours per processor is typically
small and even stays roughly the same when increasing the total amount of processors. For
12A graph in which each mesh element is represented by a vertex, and each edge (in 2D) or face (in 3D)

between elements is translated to an edge in the graph connecting the two vertices that correspond to
these elements.

37

4 High performance computing aspects

explicit time discretizations, only the block-diagonal mass matrix (cf. Section 3.4) has to be
inverted, which can be done locally on each processor. However, if implicit time integration
schemes are used, it is necessary to solve a global system of equations for which HSS or
hybridized methods (cf. Section 3.1) are promising techniques to reduce the performance
penalties.

For the three-dimensional ocean model described in Section 3.3 and implemented in
UTBEST3D (cf. Section 5.2), the computational domain is decomposed with respect to the
two-dimensional rather than the three-dimensional mesh [9]. This means columns of the
prismatic mesh are not allowed to be split over multiple processors permitting to solve lin-
ear systems locally when computing the vertical velocity component and the time-implicit
vertical diffusion terms. This avoids the need for global communication completely, and
consequently, the code displays excellent scalability properties on distributed memory com-
puters demonstrated by Aizinger et. al. [9] and in [P4]. Only in extreme scale-out situations,
where each processors is responsible only for few (less than ten) columns, it becomes chal-
lenging to find an equal distribution of two- and three-dimensional elements due to the large
variation in the number of prisms per two-dimensional element in computational domains
that comprise large bathymetry variations. As a consequence, this can cause load imbalance
and make it impractical to increase the number of processors even further.

When using shared memory parallelization, there is no explicit decomposition of the
computational domain, but iterations of loops13 are executed in parallel on an on-demand
basis as described in [P2]. This avoids load balancing issues because it lifts the column
restrictions when distributing the work. However, this comes at a price: To avoid data
races due to concurrent write operations (e. g., when assembling the contributions from face
integrals for each element), it requires to introduce temporary vectors and an additional
reduction step. Additionally, the shared memory parallelization in UTBEST3D does not
take into account memory locality, and thus, scalability significantly deteriorates when
using more than one NUMA domain (see Footnote 4 on page 32). In practice, the OpenMP-
based shared memory parallelization of UTBEST3D is only used within one NUMA domain
and combined with the MPI-based distributed memory parallelization inbetween. This
delivered the best performance for UTBEST3D due to the superior scalability of the MPI
parallelization [P2].

4.4 Energy efficiency
Historically, research in the field of high performance computing was almost exclusively
centered around improving the computational performance of hardware and software. Only
in recent years, when power became one of the driving factors towards multicore processors
and in the light of the dawning exascale era, attention was also directed to power and energy
considerations [88]. There are essentially two motivations for energy-efficient hardware and
software:

First and foremost, energy is expensive, and lowering power drain and energy-to-solution
reduces costs for HPC site operators and users running simulations, as energy expenses
over the lifetime of an HPC system are in the same order of magnitude as initial acqui-
sition costs [137]. On the other hand, there might not be enough energy available, which
can be of importance when computations are part of hazard prediction systems such as
13For example, over elements or faces when assembling the right hand side vector for explicit time integration.

38

4.4 Energy efficiency

tsunami warning systems. For example, after extreme geophysical events or in developing
countries, communication and power infrastructures may not be reliable enough, and thus
running simulations battery-powered and on-site could provide a viable solution. Simi-
lar constraints apply even to the spearhead of high performance computing, when aiming
to enhance the performance of the fastest supercomputers further, which is why the US
Department of Energy defined a power drain of 20 MW as the upper limit for their own
exascale systems [140].

Wilde, Auweter, and Shoukourian [161] categorized the range of measures that can be
taken to address energy efficiency of HPC computations in a 4 pillar framework:

1. Improve the building infrastructure, e. g., reduce losses or reuse waste heat;
2. Buy or develop better hardware;
3. Make better use of the available system, e. g., improve workload management or exploit

power saving features of the hardware;
4. Optimize the performance of user applications.

While significant gains can be expected in either of those, hardware–software co-design ap-
proaches are necessary to properly account for mutual influence between them. But even
without applying any changes to hardware or software, users can already make a contribu-
tion that falls into the third pillar above: Memory-bound applications often saturate the
memory bandwidth without making use of all available cores (as discussed in Section 4.3),
thus the overall runtime does not improve when employing more cores per multicore pro-
cessor. However, the additional cores usually dissipate the same power as fully saturated
ones, while keeping them idle is extremely energy-efficient due to the power saving features
of modern CPUs. Thus, determining the optimum number of cores per node for an applica-
tion and running simulations with this configuration could already result in non-negligible
energy savings without any drawbacks in terms of time-to-solution as detailed in [P4].

As a tool to predict energy consumption in addition to runtime and resource utilization,
energy metrics have beeen integrated into performance models (cf. Section 4.2). While such
models have proven to deliver accurate results [86], applying them is a time-consuming task
and mostly done only for single loops or the most compute intensive kernels in an applica-
tion. For applications that exhibit a flat performance profile with a number of complex code
parts that have similar runtime shares, this is often not feasible. In such cases, hardware
virtualization could evolve into a promising approach for evaluating or predicting the effi-
ciency and utilization of an entire application on existing or future hardware generations.
[C1] demonstrates good agreement of runtimes between simulated and real ARM hardware
for our three-dimensional ocean model UTBEST3D (see Section 5.2).

To further investigate the capabilities of low-power processors and compare them to
established architectures with respect to time-to-solution and energy-to-solution for a full
application code, we undertook a comparison study using UTBEST3D on ARM and Intel
Haswell processors in [P4]. As a result, we found that good parallel scalability of the
application may indeed yield an advantage for low-power architectures in both metrics at
the same time.

39

Implementation aspects and software
packages

Chapter 5
5.1 FESTUNG
The Finite Element Simulation Toolbox for Unstructured Grids (FESTUNG)1 is a free and
open source MATLAB / GNU Octave toolbox started by Balthasar Reuter, Florian Frank,
and Vadym Aizinger, which is available under the conditions of the GNU GPLv3.2 It is
designed as a fast and flexible prototyping platform and provides building blocks for discon-
tinuous Galerkin methods on unstructured grids in two space dimensions. The compact and
user-friendly programming interface and comprehensive documentation3 make the toolbox
easy to use while maintaining full compatibility with GNU Octave to support users of open
source software. In an attempt to deliver optimal computational performance it employs
vectorized operations throughout the entire code and was the first fully-vectorized MAT-
LAB code for time-implicit dG methods at the time of its initial release in 2015. Since then
it was used in several bachelor and master theses [78, 84, 120, 130, 145], publications [P1,
Pp1, P3, C3, P6, P7, P8, 4, 33, 67, 79, 80, 124, 131], and continues to be used in teaching
and research at FAU and TU Dortmund.

The toolbox consists of a core set of library functions that streamline the implementation
of dG discretizations for differential operators and a generic solver framework that simplifies
implementing mathematical models in a structured and well-organized fashion. This frame-
work is built around the perception that the overall algorithm used in numerical models
can typically be subdivided into three major steps:

1. The setup phase in which parameters are defined, input files are read, or initial com-
putations (e. g., runtime-constant data structures such as the computational mesh)
are performed.

2. The solver phase where the majority of the work is done, e. g., assembling and solv-
ing a linear system or applying an iterative method for nonlinear problems, both
potentially many times when iterating over time steps.

3. The postprocessing phase, e. g., to write results to output files, evaluate approximation
errors, etc.

FESTUNG splits these phases further up into more fine-grained steps, of which the user
implements the relevant ones as MATLAB functions and gathers them together with any
required additional routines in a folder. In the following, we refer to the set of functions
describing a numerical model as problem. A common driver routine takes care of execut-

1https://github.com/FESTUNG
2https://www.gnu.org/licenses/gpl-3.0.en.html
3https://www1.am.uni-erlangen.de/FESTUNG

https://github.com/FESTUNG
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www1.am.uni-erlangen.de/FESTUNG

5 Implementation aspects and software packages

ing the problem steps in the correct order and repeating them in the solver phase until
termination is indicated via a parameter.

Next to the advantage of having a well-organized and comprehensible code structure, this
allows to realize coupled solvers in an efficient and flexible way: Each of the subproblems
is implemented such that they can be used individually (e. g., shallow-water and subsurface
model as described in Chapter 2), and an additional problem formulation describes the
coupling of both yielding well-separated, maintainable, and reusable code. This approach
offers the flexibility to accommodate different coupling strategies, for example when coupling
separate computational domains at a common interface (as described in Section 2.3) or when
using the results of one model as input for another in the same computational domain (e. g.,
shallow-water solver and transport model in Section 3.7). The details of this solver structure
are explained in [Pp1], summarized in [C3], and were used for advection [P3] and diffusion
operators in [P1, 4, 33], Darcy flow in [124, 131], a shallow-water model in a vertical slice
coupled to Darcy flow in [P8], two-dimensional shallow-water flow [78, 79] coupled to multi-
component reactive transport in [P7], and Cahn–Hilliard equations in [67]. Many of those
problem implementations are available in the FESTUNG repository.

The core library offers functions for defining computational domains, generating trian-
gular or quadrilateral meshes, reading / writing parameter or visualization files (currently,
VTK and Tecplot file formats are supported), checkpointing and resuming simulations, and
other useful helper functions. In addition, it provides quadrature rules of various orders,
arbitrary order slope limiters, different types of basis functions (Taylor, tensor product, or
modal basis), projection operators between the corresponding function spaces, and routines
for the integration and assembly of many different types of element and edge integrals. Such
integrals appear in a similar manner for different flavors of dG methods and can often be
formulated on an element-by-element (or edge-by-edge) basis as sums of products between
some coefficients (e. g., the degrees of freedom of a function represented in the dG basis)
and corresponding integrals of products of two or more basis functions.

In FESTUNG, such contributions can be assembled efficiently into a system matrix or
right hand side vector using a tensor of integral values computed once on a reference element
and some vectorized operations (such as the Kronecker product kron or our own, more
general variant kronVec introduced in [P3]). These assembly routines are organized by
the type of integral (e. g., element or edge) and the form of the integrand (e. g., two basis
functions and a discrete function) allowing to compute the global contributions of an integral
using only two instructions. Variants of such functions allow for more complicated or even
nonlinear expressions, where numerical quadrature and vectorized assembly are combined
in an efficient manner. The details of the required algebraic transformations and efficient
implementation are presented in [P1, Pp1, P3, P6].

Currently, the range of supported variants of dG methods includes LDG, IP-dG, and HDG
(cf. Section 3.1) complemented by total variation diminishing (TVD) time discretization
schemes of orders 1 to 3 from the class of strong stability preserving (SSP) Runge–Kutta
methods [73] and diagonally implicit Runge–Kutta (DIRK) methods [13, 77] of orders 1
to 4.

42

5.2 UTBEST3D

5.2 UTBEST3D
The coastal and regional ocean model UTBEST3D (University of Texas Bays and Estu-
aries Simulator – 3D) was started by Vadym Aizinger in his PhD-project [1] and since
then steadily enhanced with additional features, verified against analytical testcases and
experimental data, and used in a number of publications [C1, P2, P4, 6, 7, 9].

It employs the LDG discretization described in Section 3.3 for the system of three-
dimensional baroclinic shallow-water equations with a hierarchical implementation of the
model to allow for different levels of physical accuracy. This allows to cover the range from
barotropic single-layer quasi-2D setups to the full baroclinic three-dimensional model with
higher-order turbulence closure schemes (using algebraic, 1st, or 2nd order vertical eddy vis-
cosity parameterizations). Spatial approximation orders can be chosen individually for each
unknown based on polynomial approximations of orders 0 to 2. Time integration is done via
a semi-implicit algorithm based on strong stability preserving Runge-Kutta methods [73]
as described in Section 3.3. Numerical fluxes are approximated using full upwinding, Lax-
Friedrichs [112], Roe’s [129], HLL [81], HLLC [151], or FORCE [150] Riemann solvers, and
vertex-based slope limiters are available to enforce local maximum principles in the solution
(cf. Section 3.6). The numerical model is capable of simulating wetting/drying scenarios,
supports non-conforming meshes to allow for varying vertical resolution in different parts
of the domain, and provides local mesh and space refinement (hp-adaptivity). The full
solution algorithm is presented in [P2] and [P4].

UTBEST3D is written in C++ and parallelized using MPI and OpenMP (see Section 4.3)
with domain decomposition based on METIS [99]. The model proved good scalability and
portability to a number of different hardware platforms [C1, P2, P4, 9], and its runtime
distribution was analyzed in detail in [P2]. Node-level performance was improved upon in
a KONWIHR-III project [R1] resulting in reasonable resource utilization and little overhead.
However, it continues to suffer from a lack of vectorization in floating point operations. The
reason for the latter is the need for frequent evaluation of short scalar products when
computing values of unknowns in quadrature points during numerical integration of edge or
element terms in system (3.5). These scalar products contribute a major share of the overall
instruction count and consist of vectors of local degrees of freedom and values of the basis
functions in the quadrature point with typical vector lengths of 1 (constant), 4 (linear) or
10 (quadratic) entries for three-dimensional unknowns. Due to the unstructured triangular
mesh and varying number of prisms in a vertical column, these vectors are stored neither
aligned nor linear in memory making it impossible for the compiler to auto-vectorize the
corresponding operations. Existing approaches to overcome this disadvantage are based on
structured meshes [24, 60], thus making the memory location for the degrees of freedom
predictable. Solutions for unstructured dG methods are still to be developed.

43

Summary and outlook
Chapter 6

The present work covers mathematical models for the numerical simulation of free surface
and subsurface flow systems and proposes a way of coupling those. Free surface flows are
modeled using the three-dimensional shallow-water equations with a free surface and vertical
eddy viscosity parameterizations. For subsurface flows, saturated flow through an aquifer
is considered and modeled by the equation for groundwater flow based on Darcy’s law.
Coupling conditions are formulated for the barotropic free surface flow model in a mass and
pressure conservative form on a sharp interface separating the two domains. Both models
are discretized using the local discontinuous Galerkin (LDG) method, and discrete stability
of the coupled model is proved.

Slope limiters are presented as effective tools to enforce the local maximum principle
for discontinuous Galerkin (dG) solutions, and this work includes contributions related to
a stricter limiter for higher-order approximations and an anisotropic limiter. In addition,
a scheme is proposed allowing to utilize the information about the solution obtained in the
course of the slope limiting procedure to yield a computationally efficient transport scheme.

The LDG method demonstrates excellent scalability on a wide range of computing archi-
tectures due to the absence of global coupling in the degrees of freedom. This scalability
can compensate up to a certain degree for the additional computational work incurred by
the large number of degrees of freedom peculiar to LDG. Furthermore, it enables the use of
larger numbers of comparably slow low-power CPUs to increase energy efficiency without
sacrificing time-to-solution.

In the course of this work, the MATLAB / GNU Octave framework FESTUNG has been
developed and applied to a number of differential operators. It is a toolbox centered around
discontinuous Galerkin methods and well-suited for use in rapid prototyping and teaching.
With comprehensive documentation and consistent application of vectorized instructions,
this framework is easy to use and, at the same time, fast enough for small to medium scale
problems.

The regional ocean model UTBEST3D employs the LDG method for the system of
three-dimensional baroclinic shallow-water equations with higher-order turbulence closure
schemes. It is written in C++, parallelized using MPI and OpenMP, and was tested on
a wide range of computing architectures. The shared-memory parallelization, improved
node-level performance, and better parallel scalability have been contributed in the course
of this work. Further additions to UTBEST3D by the author include adaptive vertical
discretization techniques in the context of a DFG project1 that modify the structure of
the mesh in vertical direction according to the current flow and density fields to capture
stratified or overflow situations and reduce non-physical mixing.

1German Research Foundation (DFG) Grant AI 117/1

6 Summary and outlook

Following the topics covered in this work, a number of open questions remain that offer
prospects for future investigations:
• The stability analysis of the discrete shallow-water model as well as of the coupled

system could be extended to the full baroclinic system. For that, it is necessary to
include the additional pressure term in the interface conditions and to accommodate
the baroclinic pressure correction term along with the additional transport equations
in the analysis framework.
• While numerical experiments suggest convergence for the system of three-dimensional

shallow-water equations, the author is not aware of any a priori error analysis for the
shallow-water model proving its convergence and giving its rate.
• The highly anisotropic setting of shallow-water flow scenarios offers opportunities to

develop anisotropic slope limiters tailored to these anisotropies, e. g., by applying dif-
ferent limiting strategies for horizontal and vertical velocity components. In addition
to that, vectorial limiters that consider velocity vectors as a whole instead of applying
the limiting procedure component-wise might also prove useful in this context.
• The large number of degrees of freedom in LDG methods results in a compute-intensive

algorithm that is characterized by the evaluation of many short scalar products in each
quadrature point of mesh entities. Exploiting the vectorization capabilities of modern
CPUs for these types of operations on unstructured meshes is not a trivial task, thus
resource utilization on current computing architectures leaves room for improvement.
Quadrature-free schemes [17] might be one way of tackling this issue.
• Using accelerators in an efficient way could improve both energy efficiency and time-to-

solution for the numerical models. Developing an approach to improve vectorization
on current CPUs would also help in using accelerators efficiently.
• With LDG proving its suitability for the simulation of three-dimensional shallow-water

systems on low-power architectures, a cluster study that verifies the efficiency of the
method on larger systems remains to be done.

46

Bibliography

[1] V. Aizinger. “A discontinuous Galerkin Method for Two- and Three-Dimensional
Shallow-Water Equations”. Ph. D. thesis. The University of Texas at Austin, 2004.
url: http://hdl.handle.net/2152/1863.

[2] V. Aizinger. “A Geometry Independent Slope Limiter for the Discontinuous Galerkin
Method. The 4th Russian-German Advanced Research Workshop, Freiburg, Ger-
many, October 12 to 16, 2009”. In: ed. by E. Krause, Y. Shokin, M. Resch, D.
Kröner, and N. Shokina. Vol. 115. Notes on Numerical Fluid Mechanics and Multi-
disciplinary Design. Springer, 2011, pp. 207–217. doi: 10.1007/978-3-642-17770-
5.

[3] V. Aizinger. “Unstructured finite element models for baroclinic ocean flows”. Habil-
itation thesis. Friedrich-Alexander-University Erlangen-Nürnberg, 2019.

[4] V. Aizinger, L. Bungert, and M. Fried. “Comparison of two local discontinuous
Galerkin formulations for the subjective surfaces problem”. In: Computing and Vi-
sualization in Science 18.6 (2018), pp. 193–202. doi: 10.1007/s00791-018-0291-4.

[5] V. Aizinger and C. Dawson. “A discontinuous Galerkin method for two-dimensional
flow and transport in shallow water”. In: Advances in Water Resources 25.1 (2002),
pp. 67–84. doi: 10.1016/S0309-1708(01)00019-7.

[6] V. Aizinger and C. Dawson. “A discontinuous Galerkin method for three-dimensional
shallow water flows with free surface”. In: Developments in Water Science 55.2
(2004), pp. 1691–1702. doi: 10.1016/S0167-5648(04)80177-1.

[7] V. Aizinger and C. Dawson. “The local discontinuous Galerkin method for three-
dimensional shallow water flow”. In: Computer Methods in Applied Mechanics and
Engineering 196.4–6 (2007), pp. 734–746. doi: 10.1016/j.cma.2006.04.010.

[8] V. Aizinger, D. Kuzmin, and L. Korous. “Scale separation in fast hierarchical solvers
for discontinuous Galerkin methods”. In: Applied Mathematics and Computation 266
(2015), pp. 838–849. doi: 10.1016/j.amc.2015.05.047.

[9] V. Aizinger, J. Proft, C. Dawson, D. Pothina, and S. Negusse. “A three-dimensional
discontinuous Galerkin model applied to the baroclinic simulation of Corpus Christi
Bay”. In: Ocean Dynamics 63.1 (2013), pp. 89–113. doi: 10.1007/s10236-012-
0579-8.

[10] V. Aizinger, A. Rupp, J. Schütz, and P. Knabner. “Analysis of a mixed discontinuous
Galerkin method for instationary Darcy flow”. In: Computational Geosciences 22.1
(2018), pp. 179–194. doi: 10.1007/s10596-017-9682-8.

http://hdl.handle.net/2152/1863
https://doi.org/10.1007/978-3-642-17770-5
https://doi.org/10.1007/978-3-642-17770-5
https://doi.org/10.1007/s00791-018-0291-4
https://doi.org/10.1016/S0309-1708(01)00019-7
https://doi.org/10.1016/S0167-5648(04)80177-1
https://doi.org/10.1016/j.cma.2006.04.010
https://doi.org/10.1016/j.amc.2015.05.047
https://doi.org/10.1007/s10236-012-0579-8
https://doi.org/10.1007/s10236-012-0579-8
https://doi.org/10.1007/s10596-017-9682-8

Bibliography

[11] V. Aizinger and J. Schütz. “A hierarchical scale separation approach for the hy-
bridized discontinuous Galerkin method”. In: Journal of Computational and Applied
Mathematics 317 (2017), pp. 500–509. doi: 10.1016/j.cam.2016.12.018.

[12] L. Akyl et al. Intel Guide for Developing Multithreaded Applications. Tech. rep. Intel
Corp., Jan. 2012. url: https://www.intel.com/software/threading-guide.

[13] R. Alexander. “Diagonally Implicit Runge–Kutta Methods for Stiff O.D.E.’s”. In:
SIAM Journal on Numerical Analysis 14.6 (1977). doi: 10.1137/0714068.

[14] G. M. Amdahl. “Validity of the single processor approach to achieving large scale
computing capabilities”. In: Proceedings of the April 18-20, 1967, Spring Joint Com-
puter Conference. 1967, pp. 483–485. doi: 10.1145/1465482.1465560.

[15] D. N. Arnold. “An Interior Penalty Finite Element Method with Discontinuous
Elements”. In: SIAM Journal on Numerical Analysis 19.4 (1982), pp. 742–760. doi:
10.1137/0719052.

[16] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. “Unified Analysis of Discon-
tinuous Galerkin Methods for Elliptic Problems”. In: SIAM Journal on Numerical
Analysis 39.5 (2002), pp. 1749–1779. doi: 10.1137/S0036142901384162.

[17] H. L. Atkins and C.-W. Shu. “Quadrature-Free Implementation of Discontinuous
Galerkin Method for Hyperbolic Equations”. In: AIAA Journal 36.5 (1998), pp. 775–
782. doi: 10.2514/2.436.

[18] I. Babuška. “The finite element method with Lagrangian multipliers”. In: Numerische
Mathematik 20.3 (1973), pp. 179–192. doi: 10.1007/BF01436561.

[19] I. Babuška and M. Zlámal. “Nonconforming Elements in the Finite Element Method
with Penalty”. In: SIAM Journal on Numerical Analysis 10.5 (1973), pp. 863–875.
doi: 10.1137/0710071.

[20] L. Bao, R. D. Nair, and H. M. Tufo. “A mass and momentum flux-form high-order
discontinuous Galerkin shallow water model on the cubed-sphere”. In: Journal of
Computational Physics 271 (2014), pp. 224–243. doi: 10.1016/j.jcp.2013.11.033.

[21] T. Barth and D. Jespersen. “The design and application of upwind schemes on
unstructured meshes”. In: AIAA 27th Aerospace Sciences Meeting, Reno. 1989. doi:
10.2514/6.1989-366.

[22] F. Bassi, A. Ghidoni, S. Rebay, and P. Tesini. “High-order accurate p-multigrid
discontinuous Galerkin solution of the Euler equations”. In: International Journal
for Numerical Methods in Fluids 60.8 (2009), pp. 847–865. doi: 10.1002/fld.1917.

[23] F. Bassi and S. Rebay. “A High-Order Accurate Discontinuous Finite Element
Method for the Numerical Solution of the Compressible Navier–Stokes Equations”.
In: Journal of Computational Physics 131.2 (1997), pp. 267–279. doi: 10.1006/
jcph.1996.5572.

[24] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger,
and O. Sander. “A generic grid interface for parallel and adaptive scientific comput-
ing. Part II: implementation and tests in DUNE”. In: Computing 82.2–3 (2008),
pp. 121–138. doi: 10.1007/s00607-008-0004-9.

[25] G. Beavers and D. Joseph. “Boundary conditions at a naturally permeable wall”. In:
Journal of Fluid Mechanics 30.1 (1967), pp. 197–207. doi: 10.1017/S0022112067001375.

48

https://doi.org/10.1016/j.cam.2016.12.018
https://www.intel.com/software/threading-guide
https://doi.org/10.1137/0714068
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1137/0719052
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.2514/2.436
https://doi.org/10.1007/BF01436561
https://doi.org/10.1137/0710071
https://doi.org/10.1016/j.jcp.2013.11.033
https://doi.org/10.2514/6.1989-366
https://doi.org/10.1002/fld.1917
https://doi.org/10.1006/jcph.1996.5572
https://doi.org/10.1006/jcph.1996.5572
https://doi.org/10.1007/s00607-008-0004-9
https://doi.org/10.1017/S0022112067001375

[26] N. Beisiegel and J. Behrens. “Quasi-nodal third-order Bernstein polynomials in a
discontinuous Galerkin model for flooding and drying”. In: Environmental Earth
Sciences 74.11 (2015), pp. 7275–7284. doi: 10.1007/s12665-015-4745-4.

[27] P.-E. Bernard, N. Chevaugeon, V. Legat, E. Deleersnijder, and J.-F. Remacle. “High-
order h-adaptive discontinuous Galerkin methods for ocean modelling”. In: 57.2
(2007), pp. 109–121. doi: 10.1007/s10236-006-0093-y.

[28] C. A. Blain and T. C. Massey. “Application of a coupled discontinuous–continuous
Galerkin finite element shallow water model to coastal ocean dynamics”. In: Ocean
Modelling 10.3–4 (2005), pp. 283–315. doi: 10.1016/j.ocemod.2004.09.002.

[29] S. Blaise, R. Comblen, V. Legat, J.-F. Remacle, E. Deleersnijder, and J. Lambrechts.
“A discontinuous finite element baroclinic marine model on unstructured prismatic
meshes. Part I: space discretization”. In: Ocean Dynamics 60.6 (2010), pp. 1371–
1393. doi: 10.1007/s10236-010-0358-3.

[30] S. Blaise, J. Lambrechts, and E. Deleersnijder. “A stabilization for three-dimensional
discontinuous Galerkin discretizations applied to nonhydrostatic atmospheric sim-
ulations”. In: International Journal for Numerical Methods in Fluids 9 (2016),
pp. 558–585. doi: 10.1002/fld.4197.

[31] OpenMP Architecture Review Board. OpenMP Application Programming Interface.
Tech. rep. Version 5.0. Nov. 2018. url: https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5.0.pdf.

[32] F. Brunner and P. Knabner. “A global implicit solver for miscible reactive multiphase
multicomponent flow in porous media”. In: Computational Geosciences 23.1 (2019),
pp. 127–148. doi: 10.1007/s10596-018-9788-7.

[33] L. Bungert, V. Aizinger, and M. Fried. “A Discontinuous Galerkin Method for the
Subjective Surfaces Problem”. In: Journal of Mathematical Imaging and Vision 58.1
(2017), pp. 147–161. doi: 10.1007/s10851-016-0695-z.

[34] G. Chavent and B. Cockburn. “The local projection P 0-P 1-discontinuous-Galerkin
finite element method for scalar conservation laws”. In: Mathematical Modeling and
Numerical Analysis 23.4 (1989), pp. 565–592. doi: 10.1051/m2an/1989230405651.

[35] S.-J. Choi and F. X. Giraldo. “Geoscientific Model Development Discussions”. In: 7
(2014), pp. 4119–4151. doi: 10.5194/gmdd-7-4119-2014.

[36] B. Cockburn, D. A. Di Pietro, and A. Ern. “Bridging the hybrid high-order and
hybridizable discontinuous Galerkin methods”. In: ESAIM: M2AN 50.3 (2016),
pp. 635–650. doi: 10.1051/m2an/2015051.

[37] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. “Unified Hybridization of Dis-
continuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order
Elliptic Problems”. In: SIAM Journal on Numerical Analysis 47.2 (2009), pp. 1319–
1365. doi: 10.1137/070706616.

[38] B. Cockburn, S. Hou, and C.-W. Shu. “TVB Runge-Kutta local projection dis-
continuous Galerkin finite element method for conservation laws. IV. The multidi-
mensional case”. In: Mathematics of Computation 54.190 (1990), pp. 545–581. doi:
10.1090/S0025-5718-1990-1010597-0.

49

https://doi.org/10.1007/s12665-015-4745-4
https://doi.org/10.1007/s10236-006-0093-y
https://doi.org/10.1016/j.ocemod.2004.09.002
https://doi.org/10.1007/s10236-010-0358-3
https://doi.org/10.1002/fld.4197
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/s10596-018-9788-7
https://doi.org/10.1007/s10851-016-0695-z
https://doi.org/10.1051/m2an/1989230405651
https://doi.org/10.5194/gmdd-7-4119-2014
https://doi.org/10.1051/m2an/2015051
https://doi.org/10.1137/070706616
https://doi.org/10.1090/S0025-5718-1990-1010597-0

Bibliography

[39] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, eds. Discontinuous Galerkin Meth-
ods. Vol. 11. Lecture Notes in Computational Science and Engineering. Springer,
2000. doi: 10.1007/978-3-642-59721-3.

[40] B. Cockburn, G. E. Karniadakis, and C.-W. Shu. “The Development of Discontinu-
ous Galerkin Methods”. In: ed. by B. Cockburn, G. E. Karniadakis, and C.-W. Shu.
Vol. 11. Lecture Notes in Computational Science and Engineering. Springer, 2000,
pp. 3–50. doi: 10.1007/978-3-642-59721-3.

[41] B. Cockburn, S. Y. Lin, and C.-W. Shu. “TVB Runge–Kutta local projection discon-
tinuous Galerkin finite element method for conservation laws. III. One-dimensional
systems”. In: Journal of Computational Physics 84.1 (1989), pp. 90–113. doi: 10.
1016/0021-9991(89)90183-6.

[42] B. Cockburn and C.-W. Shu. “TVB Runge–Kutta local projection discontinuous
Galerkin finite element method for conservation laws. II. General framework”. In:
Mathematics of Computation 52.186 (1989), pp. 411–435. doi: 10.1090/S0025-
5718-1989-0983311-4.

[43] B. Cockburn and C.-W. Shu. “The Runge–Kutta local projection P 1-discontinuous-
Galerkin finite element method for scalar conservation laws”. In: Mathematical
Modeling and Numerical Analysis 25.3 (1991), pp. 337–361. doi: 10.1051/m2an/
1991250303371.

[44] B. Cockburn and C.-W. Shu. “The Local Discontinuous Galerkin Method for Time-
Dependent Convection-Diffusion Systems”. In: SIAM Journal on Numerical Analysis
35.6 (1998), pp. 2440–2463. doi: 10.1137/S0036142997316712.

[45] B. Cockburn and C.-W. Shu. “TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws. V. Multidimensional systems”.
In: Journal of Computational Physics 141.2 (1998), pp. 199–224. doi: 10.1006/
jcph.1998.5892.

[46] C. J. Conroy and E. J. Kubatko. “hp discontinuous Galerkin methods for the vertical
extent of the water column in coastal settings part I: Barotropic forcing”. In: Journal
of Computational Physics 305 (2016), pp. 1147–1171. doi: 10.1016/j.jcp.2015.
10.038.

[47] UPC Consortium. UPC Language Specifications. Tech. rep. Version 1.3. Nov. 2013.
url: https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf.

[48] S. Danilov. “Ocean modeling on unstructured meshes”. In: Ocean Modeling 69
(2013), pp. 195–210. doi: j.ocemod.2013.05.005.

[49] C. Dawson. “A continuous/discontinuous Galerkin framework for modeling cou-
pled subsurface and surface water flow”. In: Computational Geosciences 12.4 (2008),
pp. 451–472. doi: 10.1007/s10596-008-9085-y.

[50] C. Dawson. “A Local Timestepping Runge–Kutta Discontinuous Galerkin Method
for Hurricane Storm Surge Modeling. 2012 John H Barrett Memorial Lectures”.
In: ed. by X. Feng, O. Karakashian, and Y. Xing. Vol. 157. The IMA Volumes in
Mathematics and its Applications. 2013, pp. 133–148. doi: 10.1007/978-3-319-
01818-8.

50

https://doi.org/10.1007/978-3-642-59721-3
https://doi.org/10.1007/978-3-642-59721-3
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.1090/S0025-5718-1989-0983311-4
https://doi.org/10.1090/S0025-5718-1989-0983311-4
https://doi.org/10.1051/m2an/1991250303371
https://doi.org/10.1051/m2an/1991250303371
https://doi.org/10.1137/S0036142997316712
https://doi.org/10.1006/jcph.1998.5892
https://doi.org/10.1006/jcph.1998.5892
https://doi.org/10.1016/j.jcp.2015.10.038
https://doi.org/10.1016/j.jcp.2015.10.038
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
https://doi.org/j.ocemod.2013.05.005
https://doi.org/10.1007/s10596-008-9085-y
https://doi.org/10.1007/978-3-319-01818-8
https://doi.org/10.1007/978-3-319-01818-8

[51] C. Dawson and V. Aizinger. “A Discontinuous Galerkin Method for Three-Dimensional
Shallow Water Equations”. In: Journal of Scientific Computing 22.1–3 (2005), pp. 245–
267. doi: 10.1007/s10915-004-4139-3.

[52] C. Dawson and J. Proft. “Discontinuous and coupled continuous/discontinuous Galerkin
methods for the shallow water equations”. In: Computer Methods in Applied Me-
chanics and Engineering 91.41–42 (2002), pp. 4721–4746. doi: 10.1016/S0045-
7825(02)00402-4.

[53] T. De Maet, F. Cornaton, and E. Hanert. “A scalable coupled surface–subsurface
flow model”. In: Computers & Fluids 116 (2015), pp. 74–87. doi: 10 . 1016 / j .
compfluid.2015.03.028.

[54] D. A. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin Meth-
ods. Vol. 69. Mathématiques et Applications. Springer, 2012. doi: 10.1007/978-3-
642-22980-0.

[55] D. A. Di Pietro and A. Ern. “A hybrid high-order locking-free method for linear
elasticity on general meshes”. In: Computer Methods in Applied Mechanics and En-
gineering 283 (2015), pp. 1–21. doi: 10.1016/j.cma.2014.09.009.

[56] D. A. Di Pietro, A. Ern, and S. Lemaire. “An Arbitrary-Order and Compact-Stencil
Discretization of Diffusion on General Meshes Based on Local Reconstruction Op-
erators”. In: Computational Methods in Applied Mathematics 14.4 (2014), pp. 461–
472. doi: 10.1515/cmam-2014-0018.

[57] D. A. Di Pietro and M. Vohralik. “A Review of Recent Advances in Discretization
Methods, a Posteriori Error Analysis, and Adaptive Algorithms for Numerical Mod-
eling in Geosciences”. In: Oil & Gas Science and Technology – Rev. IFP Energies
nouvelles 69.4 (2014), pp. 701–729. doi: 10.2516/ogst/2013158.

[58] P. A. Domenico and F. W. Schwartz. Physical and chemical hydrogeology. New York:
Wiley, 1990. isbn: 0-471-50744-X.

[59] M. Dumbser and M. Facchini. “A space-time discontinuous Galerkin method for
Boussinesq-type equations”. In: Applied Mathematics and Computation 272.2 (2016),
pp. 336–346. doi: 10.1016/j.amc.2015.06.052.

[60] M. Dumbser, F. Fambri, M. Tavelli, M. Bader, and T. Weinzierl. “Efficient Imple-
mentation of ADER Discontinuous Galerkin Schemes for a Scalable Hyperbolic PDE
Engine”. In: Axioms 7.3 (2018). doi: 10.3390/axioms7030063.

[61] A. Duran and F. Marche. “Recent advances on the discontinuous Galerkin method
for shallow water equations with topography source terms”. In: Computers & Fluids
101 (2014), pp. 88–104. doi: 10.1016/j.compfluid.2014.05.031.

[62] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, and A. L. Varbanescu. “Test-driving
Intel Xeon Phi”. In: Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering. 2014, pp. 137–148. doi: 10.1145/2568088.2576799.

[63] T. Fetzer, K. M. Smits, and R. Helmig. “Effect of Turbulence and Roughness on
Coupled Porous-Medium/Free-Flow Exchange Processes”. In: Transport in Porous
Media 114.2 (2016), pp. 395–424. doi: 10.1007/s11242-016-0654-6.

51

https://doi.org/10.1007/s10915-004-4139-3
https://doi.org/10.1016/S0045-7825(02)00402-4
https://doi.org/10.1016/S0045-7825(02)00402-4
https://doi.org/10.1016/j.compfluid.2015.03.028
https://doi.org/10.1016/j.compfluid.2015.03.028
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1016/j.cma.2014.09.009
https://doi.org/10.1515/cmam-2014-0018
https://doi.org/10.2516/ogst/2013158
https://doi.org/10.1016/j.amc.2015.06.052
https://doi.org/10.3390/axioms7030063
https://doi.org/10.1016/j.compfluid.2014.05.031
https://doi.org/10.1145/2568088.2576799
https://doi.org/10.1007/s11242-016-0654-6

Bibliography

[64] K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal. “p-Multigrid solution of
high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes
equations”. In: Journal of Computational Physics 207.1 (2005), pp. 92–113. doi:
10.1016/j.jcp.2005.01.005.

[65] GASPI Forum. GASPI: Global Address Space Programming Interface. Specifica-
tion of a PGAS API for communication. Tech. rep. Version 17.1. Feb. 2017. url:
https://raw.githubusercontent.com/GASPI-Forum/GASPI-Forum.github.io/
master/standards/GASPI-17.1.pdf.

[66] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Tech. rep. Version 3.1. University of Knoxville, Tennessee, June 2015. url: https:
//www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[67] F. Frank, A. Rupp, and D. Kuzmin. Bound-preserving flux limiting schemes for
DG discretizations of conservation laws with applications to the Cahn-Hilliard equa-
tion. Preprint. Friedrich-Alexander-Universität Erlangen-Nürnberg, 2019. doi: 10.
13140/RG.2.2.13496.60160.

[68] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa. Heterogeneous Computing
with OpenCL. 1st ed. Morgan Kaufmann, 2011. doi: 10.1016/C2011-0-69669-3.

[69] A. E. Gill. Atmosphere-Ocean Dynamics. Vol. 30. International Geophysics. Aca-
demic Press, 1982. doi: 10.1016/s0074-6142(08)x6002-4.

[70] F. X. Giraldo, J. S. Hesthaven, and T. Warburton. “Nodal High-Order Discontin-
uous Galerkin Methods for the Spherical Shallow Water Equations”. In: Journal of
Computational Physics 181.2 (2002), pp. 499–525. doi: 10.1006/jcph.2002.7139.

[71] J.-C. Golaz et al. “The DOE E3SM coupled model version 1: Overview and evalu-
ation at standard resolution”. In: Journal of Advances in Modeling Earth Systems
11 (2019). doi: 10.1029/2018MS001603.

[72] S. Gottlieb and C.-W. Shu. “Total variation diminishing Runge-Kutta schemes”. In:
Mathematics of Computation 67 (1998), pp. 73–85. doi: 10.1090/S0025-5718-98-
00913-2.

[73] S. Gottlieb, C.-W. Shu, and E. Tadmore. “Strong Stability-Preserving High-Order
Time Discretization Methods”. In: SIAM Review 43.1 (2001), pp. 89–112. doi: 10.
1137/S003614450036757X.

[74] S. Griffies and Co-Authors. “Problems and Prospects in Large-Scale Ocean Circu-
lation Models”. In: Proceedings of OceanObs’09: Sustained Ocean Observations and
Information for Society. Vol. 2. 2010. doi: 10.5270/OceanObs09.cwp.38.

[75] G. Hager and G. Wellein. Introduction to High Performance Computing for Scien-
tists and Engineers. Computational Science Series. CRC Press, 2011. doi: 10.1201/
EBK1439811924.

[76] G. Hager and G. Wellein. “Performance Engineering”. In: Informatik-Spektrum 41.5
(2018), pp. 323–327. doi: 10.1007/s00287-018-1122-1.

[77] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Vol. 14.
Springer Series in Computational Mathematics. Springer, 1996. doi: 10.1007/978-
3-642-05221-7.

52

https://doi.org/10.1016/j.jcp.2005.01.005
https://raw.githubusercontent.com/GASPI-Forum/GASPI-Forum.github.io/master/standards/GASPI-17.1.pdf
https://raw.githubusercontent.com/GASPI-Forum/GASPI-Forum.github.io/master/standards/GASPI-17.1.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.13140/RG.2.2.13496.60160
https://doi.org/10.13140/RG.2.2.13496.60160
https://doi.org/10.1016/C2011-0-69669-3
https://doi.org/10.1016/s0074-6142(08)x6002-4
https://doi.org/10.1006/jcph.2002.7139
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.5270/OceanObs09.cwp.38
https://doi.org/10.1201/EBK1439811924
https://doi.org/10.1201/EBK1439811924
https://doi.org/10.1007/s00287-018-1122-1
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1007/978-3-642-05221-7

[78] H. Hajduk. “A numerical investigation of direct bathymetry reconstruction based
on a modified shallow-water model”. M. Sc. thesis. Friedrich-Alexander-University
Erlangen-Nürnberg, 2017.

[79] H. Hajduk, D. Kuzmin, and V. Aizinger. Bathymetry reconstruction using inverse
shallow water models: Finite element discretization and regularization. Tech. rep.
Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 585. Fakultät
für Mathematik, TU Dortmund, 2018.

[80] H. Hajduk, D. Kuzmin, and V. Aizinger. “New directional vector limiters for dis-
continuous Galerkin methods”. In: Journal of Computational Physics 384 (2019),
pp. 308–325. doi: 10.1016/j.jcp.2019.01.032.

[81] A. Harten, P. D. Lax, and B. van Leer. “On upstream differencing and Godunov-type
schemes for hyperbolic conservation laws”. In: SIAM Review 25.1 (1983), pp. 35–61.
doi: 10.1137/1025002.

[82] A. Heinecke, M. Klemm, and H.-J. Bungartz. “From GPGPU to Many-Core: Nvidia
Fermi and Intel Many Integrated Core Architecture”. In: Computing in Science &
Engineering 14.78 (2012), pp. 78–83. doi: 10.1109/MCSE.2012.23.

[83] R. Helmig and H. Class. Fluidmechanik II. Lecture notes. Department of Hydrome-
chanics and Modelling of Hydrosystems, University Stuttgart. 2014. url: https://
ilias3.uni-stuttgart.de/ilias.php?baseClass=ilrepositorygui&reloadpublic=
1&cmd=frameset&ref_id=1.

[84] J. Hodai. “Problem of Open Boundaries in the Two-dimensional Shallow Water
Equations”. B. Sc. thesis. Friedrich-Alexander-University Erlangen-Nürnberg, 2016.

[85] B. R. Hodges. “A new approach to the local time stepping problem for scalar trans-
port”. In: Ocean Modelling 77 (2014), pp. 1–19. doi: 10.1016/j.ocemod.2014.02.
007.

[86] J. Hofmann, G. Hager, and D. Fey. “On the Accuracy and Usefulness of Analytic
Energy Models for Contemporary Multicore Processors”. In: ISC High Performance
2018: High Performance Computing. 2018, pp. 22–43. doi: 10.1007/978-3-319-
92040-5_2.

[87] M. E. Hubbard. “Multidimensional Slope Limiters for MUSCL-Type Finite Vol-
ume Schemes on Unstructured Grids”. In: Journal of Computational Physics 155.1
(1999), pp. 54–74. doi: 10.1006/jcph.1999.6329.

[88] J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Van Dyke, and C.
Vaughan. Energy-Efficient High Performance Computing. Springer Briefs in Com-
puter Science. Springer, 2012. doi: 10.1007/978-1-4471-4492-2.

[89] IOC, SCOR, and IAPSO. The international thermodynamic equation of seawater –
2010: Calculation and use of thermodynamic properties. Intergovernmental Oceano-
graphic Commission, Manuals and Guides 56. UNESCO, 2010. url: http://www.
teos-10.org/pubs/TEOS-10_Manual.pdf.

[90] N. Izem, M. Seaid, and M. Wakrim. “A discontinuous Galerkin method for two-
layer shallow water equations”. In: Mathematics and Computers in Simulation 120
(2015), pp. 12–23. doi: 10.1016/j.matcom.2015.04.009.

53

https://doi.org/10.1016/j.jcp.2019.01.032
https://doi.org/10.1137/1025002
https://doi.org/10.1109/MCSE.2012.23
https://ilias3.uni-stuttgart.de/ilias.php?baseClass=ilrepositorygui&reloadpublic=1&cmd=frameset&ref_id=1
https://ilias3.uni-stuttgart.de/ilias.php?baseClass=ilrepositorygui&reloadpublic=1&cmd=frameset&ref_id=1
https://ilias3.uni-stuttgart.de/ilias.php?baseClass=ilrepositorygui&reloadpublic=1&cmd=frameset&ref_id=1
https://doi.org/10.1016/j.ocemod.2014.02.007
https://doi.org/10.1016/j.ocemod.2014.02.007
https://doi.org/10.1007/978-3-319-92040-5_2
https://doi.org/10.1007/978-3-319-92040-5_2
https://doi.org/10.1006/jcph.1999.6329
https://doi.org/10.1007/978-1-4471-4492-2
http://www.teos-10.org/pubs/TEOS-10_Manual.pdf
http://www.teos-10.org/pubs/TEOS-10_Manual.pdf
https://doi.org/10.1016/j.matcom.2015.04.009

Bibliography

[91] H. Rui J. Zang. “A stabilized Crouzeix-Raviart element method for coupling Stokes
and Darcy-Forchheimer flows”. In: Numerical Methods for Partial Differential Equa-
tions 33.4 (2017), pp. 1070–1094. doi: 10.1002/num.22129.

[92] N. Jansson. “High Performance Adaptive Finite Element Methods: With Applica-
tions in Aerodynamics”. Ph. D. thesis. Stockholm: KTH Royal Institute of Technol-
ogy, 2013. url: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125742.

[93] A. Jaust, J. Schütz, and V. Aizinger. “An efficient linear solver for the hybridized
discontinuous Galerkin method”. In: Proceedings in Applied Mathematics and Me-
chanics 16.1 (2016), pp. 845–846. doi: 10.1002/pamm.201610411.

[94] A. Jeschke, S. Vater, and J. Behrens. “A Discontinuous Galerkin Method for Non-
hydrostatic Shallow Water Flows”. In: Finite Volumes for Complex Applications
VIII – Hyperbolic, Elliptic and Parabolic Problems. FVCA 2017. Ed. by C. Cancès
and P. Omnes. Vol. 200. Springer Proceedings in Mathematics & Statistics. 2017,
pp. 247–255. doi: 10.1007/978-3-319-57394-6_27.

[95] L. H. Kantha and C. A. Clayson. Numerical Models of Oceans and Oceanic Pro-
cesses. Vol. 66. International Geophysics. Academic Press, 2000. doi: 10.1016/
s0074-6142(00)x8001-1.

[96] T. Kärnä, B. Brye, O. Gourgue, J. Lambrechts, R. Comblen, V. Legat, and E.
Deleersnijder. “A fully implicit wetting–drying method for DG-FEM shallow water
models, with an application to the Scheldt Estuary”. In: computer Methods in Ap-
plied Mechanics and Engineering 200.5–8 (2011), pp. 509–524. doi: 10.1016/j.
cma.2010.07.001.

[97] T. Kärnä, S. C. Kramer, L. Mitchell, D. A. Ham, M. D. Piggot, and A. M. Baptista.
“Thetis coastal ocean model: discontinuous Galerkin discretization for the three-
dimensional hydrostatic equations”. In: Geoscientific Model Development 11 (2018),
pp. 4359–4382. doi: 10.5194/gmd-11-4359-2018.

[98] T. Kärnä, V. Legat, and E. Deleersnijder. “A baroclinic discontinuous Galerkin
finite element model for coastal flows”. In: Ocean Modelling 61 (2013), pp. 1–20.
doi: 10.1016/j.ocemod.2012.09.009.

[99] G. Karypis and V. Kumar. “A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs”. In: SIAM Journal on Scientific Computing 20.1 (1999).
doi: 10.1137/S1064827595287997.

[100] G. Kesserwani and Q. Liang. “Dynamically adaptive grid based discontinuous Galerkin
shallow water model”. In: Advances in Water Resources 37 (2012), pp. 23–39. doi:
10.1016/j.advwatres.2011.11.006.

[101] A. A. Khan and W. Lai. Modeling Shallow Water Flows Using the Discontinuous
Galerkin Method. CRC Press, 2014. doi: 10.1201/b16579.

[102] K. Klingbeil, F. Lemarié, L. Debreu, and H. Burchard. “The numerics of hydrostatic
structured-grid coastal ocean models: State of the art and future perspectives”. In:
Ocean Modeling 125 (2018), pp. 80–105. doi: 10.1016/j.ocemod.2018.01.007.

[103] B. A. Klinger. Density of Seawater. Accessed on Jan 4, 2019. 2002. url: https:
//mason.gmu.edu/˜bklinger/seawater.pdf.

54

https://doi.org/10.1002/num.22129
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125742
https://doi.org/10.1002/pamm.201610411
https://doi.org/10.1007/978-3-319-57394-6_27
https://doi.org/10.1016/s0074-6142(00)x8001-1
https://doi.org/10.1016/s0074-6142(00)x8001-1
https://doi.org/10.1016/j.cma.2010.07.001
https://doi.org/10.1016/j.cma.2010.07.001
https://doi.org/10.5194/gmd-11-4359-2018
https://doi.org/10.1016/j.ocemod.2012.09.009
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1016/j.advwatres.2011.11.006
https://doi.org/10.1201/b16579
https://doi.org/10.1016/j.ocemod.2018.01.007
https://mason.gmu.edu/~bklinger/seawater.pdf
https://mason.gmu.edu/~bklinger/seawater.pdf

[104] L. Krivodonova. “Limiters for high-order discontinuous Galerkin methods”. In: Jour-
nal of Computational Physics 226.1 (2007), pp. 879–896. doi: 10.1016/j.jcp.2007.
05.011.

[105] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, and J. E. Flaherty. “Shock
detection and limiting with discontinuous Galerkin methods for hyperbolic conser-
vation laws”. In: Applied Numerical Mathematics 48.3–4 (2004), pp. 323–338. doi:
10.1016/j.apnum.2003.11.002.

[106] E. J. Kubatko, Westerink, and C. Dawson. “hp Discontinuous Galerkin methods
for advection dominated problems in shallow water flow”. In: Computer Methods in
Applied Mechanics and Engineering 196.1–3 (2006), pp. 437–451. doi: 10.1016/j.
cma.2006.05.002.

[107] D. Kuzmin. “A vertex-based hierarchical slope limiter for p-adaptive discontinuous
Galerkin methods”. In: Journal of Computational and Applied Mathematics 233.12
(2010), pp. 3077–3085. doi: 10.1016/j.cam.2009.05.028.

[108] D. Kuzmin. “Algebraic Flux Correction I”. In: Flux-Corrected Transport: Principles,
Algorithms, and Applications. Ed. by D. Kuzmin, R. Löhner, and S. Turek. 2012,
pp. 145–192. doi: 10.1007/978-94-007-4038-9_6.

[109] D. Kuzmin. “Slope limiting for discontinuous Galerkin approximations with a possi-
bly non-orthogonal Taylor basis”. In: International Journal for Numerical Methods
in Fluids 71.9 (2013), pp. 1178–1190. doi: 10.1002/fld.3707.

[110] D. Kuzmin. “Hierarchical slope limiting in explicit and implicit discontinuous Galerkin
methods”. In: Journal of Computational Physics 257.B (2014), pp. 1140–1162. doi:
10.1016/j.jcp.2013.04.032.

[111] W. Lai and A. A. Khan. “A discontinuous Galerkin method for two-dimensional
shallow water flows”. In: Numerical Methods in Fluids 70.8 (2012), pp. 939–960.
doi: 10.1002/fld.2721.

[112] P. Lax. “The Formation and Decay of Shock Waves”. In: The American Mathemat-
ical Monthly 79.3 (1972), pp. 227–241. doi: 10.1080/00029890.1972.11993023.

[113] M. N. Levy, R. D. Nair, and H. M. Tufo. “High-order Galerkin methods for scalable
global atmospheric models”. In: Computational Geosciences 33.8 (2007), pp. 1022–
1035. doi: 10.1016/j.cageo.2006.12.004.

[114] D. Liang, R. A. Falconer, and B. Lin. “Coupling surface and subsurface flows in a
depth averaged flood wave model”. In: Journal of Hydrology 337 (2007), pp. 147–
158. doi: 10.1016/j.jhydrol.2007.01.045.

[115] FUJITSU Ltd. Post-K Supercomputer Overview. Accessed on Apr 30, 2019. Nov.
2016. url: https://www.fujitsu.com/global/Images/post-k-supercomputer-
overview.pdf.

[116] H. Luo, J. D. Baum, and R. Löhner. “A p-multigrid discontinuous Galerkin method
for the Euler equations on unstructured grids”. In: Journal of Computational Physics
211.2 (2006), pp. 767–783. doi: 10.1016/j.jcp.2005.06.019.

[117] J. Magiera, C. Rohde, and I. Rybak. “A Hyperbolic–Elliptic Model Problem for
Coupled Surface–Subsurface Flow”. In: Transport in Porous Media 114.2 (2016),
pp. 425–455. doi: 10.1007/s11242-015-0548-z.

55

https://doi.org/10.1016/j.jcp.2007.05.011
https://doi.org/10.1016/j.jcp.2007.05.011
https://doi.org/10.1016/j.apnum.2003.11.002
https://doi.org/10.1016/j.cma.2006.05.002
https://doi.org/10.1016/j.cma.2006.05.002
https://doi.org/10.1016/j.cam.2009.05.028
https://doi.org/10.1007/978-94-007-4038-9_6
https://doi.org/10.1002/fld.3707
https://doi.org/10.1016/j.jcp.2013.04.032
https://doi.org/10.1002/fld.2721
https://doi.org/10.1080/00029890.1972.11993023
https://doi.org/10.1016/j.cageo.2006.12.004
https://doi.org/10.1016/j.jhydrol.2007.01.045
https://www.fujitsu.com/global/Images/post-k-supercomputer-overview.pdf
https://www.fujitsu.com/global/Images/post-k-supercomputer-overview.pdf
https://doi.org/10.1016/j.jcp.2005.06.019
https://doi.org/10.1007/s11242-015-0548-z

Bibliography

[118] S. May and M. Berger. “Two-Dimensional Slope Limiters for Finite Volume Schemes
on Non-Coordinate-Aligned Meshes”. In: SIAM Journal on Scientific Computing
35.5 (2013), A2163–A2187. doi: 10.1137/120875624.

[119] C. Michoski, C. Mirabito, C. Dawson, D. Wirasaet, E. J. Kubatko, and J. J. West-
erink. “Adaptive hierarchic transformations for dynamically p-enriched slope-limiting
over discontinuous Galerkin systems of generalized equations”. In: Journal of Com-
putational Physics 230 (2011), pp. 8028–8056. doi: 10.1016/j.jcp.2011.07.009.

[120] M. Musch. “Hierarchical scale separation as solver for linear systems resulting from
discontinuous Galerkin discretizations”. B. Sc. thesis. Friedrich-Alexander-University
Erlangen-Nürnberg, 2016.

[121] J. von Neumann. First Draft of a Report on the EDVAC. Tech. rep. Moore School
of Electrical Engineering, University of Pennsylvania, 1945. url: https://sites.
google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=
0&d=1.

[122] J. Oden, I. Babuška, and C. Baumann. “A Discontinuous hp Finite Element Method
for Diffusion Problems”. In: Journal of Computational Physics 146.2 (1998), pp. 491–
519. doi: 10.1006/jcph.1998.6032.

[123] W. Pan, S. C. Kramer, and M. D. Piggot. “Multi-layer non-hydrostatic free sur-
face modelling using the discontinuous Galerkin method”. In: Ocean Modelling 134
(2019), pp. 68–83. doi: 10.1016/j.ocemod.2019.01.003.

[124] N. Ray, A. Rupp, and A. Prechtel. “Discrete-continuum multiscale model for trans-
port, biomass development and solid restructuring in porous media”. In: Advances
in Water Resources 107 (2017), pp. 393–404. doi: 10.1016/j.advwatres.2017.
04.001.

[125] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport
equation. Tech. rep. LA-UR-73-0479. Los Alamos, NM: Los Alamos Scientific Lab-
oratory, 1973. url: https://permalink.lanl.gov/object/tr?what=info:lanl-
repo/lareport/LA-UR-73-0479.

[126] J. Reid. Coarrays in the next Fortran Standard. Tech. rep. ISO/IEC JTC1/SC22/WG5
N1824. Apr. 2010. url: https://wg5-fortran.org/N1801-N1850/N1824.pdf.

[127] J.-F. Remacle, S. S. Frazao, X. Li, and M. S. Shephard. “An adaptive discretization
of shallow-water equations based on discontinuous Galerkin methods”. In: Inter-
national Journal for Numerical Methods in Fluids 52.8 (2006), pp. 903–923. doi:
10.1002/fld.1204.

[128] B. Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equa-
tions. Frontiers in Applied Mathematics. SIAM, 2008. doi: 10.1137/1.9780898717440.

[129] P. L. Roe. “Approximate Riemann solvers, parameter vectors, and difference schemes”.
In: Journal of Computational Physics 43.2 (1981), pp. 357–372. doi: 10.1016/0021-
9991(81)90128-5.

[130] A. Rupp. “A Discontinuous Galerkin Model of Coupled Surface and Subsurface Flow
in a Vertical Two-Dimensional Slice”. M. Sc. thesis. Friedrich-Alexander-University
Erlangen-Nürnberg, 2015.

56

https://doi.org/10.1137/120875624
https://doi.org/10.1016/j.jcp.2011.07.009
https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=0&d=1
https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=0&d=1
https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=0&d=1
https://doi.org/10.1006/jcph.1998.6032
https://doi.org/10.1016/j.ocemod.2019.01.003
https://doi.org/10.1016/j.advwatres.2017.04.001
https://doi.org/10.1016/j.advwatres.2017.04.001
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-73-0479
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-73-0479
https://wg5-fortran.org/N1801-N1850/N1824.pdf
https://doi.org/10.1002/fld.1204
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/0021-9991(81)90128-5

[131] A. Rupp and P. Knabner. “Convergence order estimates of the local discontinuous
Galerkin method for instationary Darcy flow”. In: Numerical Methods for Partial
Differential Equations 33.4 (2017), pp. 1374–1394. doi: 10.1002/num.22150.

[132] A. Rupp, P. Knabner, and C. Dawson. “A local discontinuous Galerkin scheme
for Darcy flow with internal jumps”. In: Computational Geosciences 22.4 (2018),
pp. 1149–1159. doi: 10.1007/s10596-018-9743-7.

[133] I. Rybak. “Coupling Free Flow and Porous Medium Flow Systems Using Sharp
Interface and Transition Region Concepts”. In: Finite Volumes for Complex Appli-
cations VII – Elliptic, Parabolic and Hyperbolic Problems. Ed. by J. Fuhrmann, M.
Ohlberger, and C. Rohde. Vol. 78. Springer Proceedings in Mathematics & Statistics.
2014, pp. 703–711. doi: 10.1007/978-3-319-05591-6_70,.

[134] I. Rybak, J. Magiera, R. Helmig, and C. Rohde. “Multirate time integration for
coupled saturated/unsaturated porous medium and free flow systems”. In: Compu-
tational Geosciences 19.2 (2015), pp. 299–309. doi: 10.1007/s10596-015-9469-8.

[135] P. G. Saffman. “On the Boundary Condition at the Surface of a Porous Medium”.
In: Studies in Applied Mathematics 50 (1971). doi: 10.1002/sapm197150293.

[136] H. Salehipour, G. R. Stuhne, and W. R. Peltier. “A higher order discontinuous
Galerkin, global shallow water model: Global ocean tides and aquaplanet bench-
marks”. In: Ocean Modelling 69 (2013), pp. 93–107. doi: 10.1016/j.ocemod.2013.
06.001.

[137] B. Schäppi, B. Przywara, F. Bellosa, T. Bogner, S. Weeren, R. Harrison, and A.
Anglade. Energy Efficient Servers in Europe. Tech. rep. Intelligent Energy Europe
Project, 2009. url: https://ec.europa.eu/energy/intelligent/projects/
sites/iee-projects/files/projects/documents/e-server_e_server_final_
publishable_report_en.pdf.

[138] R. Schulz and P. Knabner. “An Effective Model for Biofilm Growth Made by Chemo-
tactical Bacteria in Evolving Porous Media”. In: SIAM Journal on Applied Mathe-
matics 77.5 (2017). doi: 10.1137/16M108817X.

[139] R. Schulz, N. Ray, F. Frank, H. Mahato, and P. Knabner. “Strong solvability
up to clogging of an effective diffusion–precipitation model in an evolving porous
medium”. In: European Journal of Applied Mathematics 28.2 (2017). doi: 10.1017/
S0956792516000164.

[140] J. Shalf, S. Dosanjh, and J. Morrison. “Exascale Computing Technology Challenges”.
In: VECPAR 2010: High Performance Computing for Computational Science. 2011,
pp. 1–25. doi: 10.1007/978-3-642-19328-6_1.

[141] C.-W. Shu. “High order WENO and DG methods for time-dependent convection-
dominated PDEs: A brief survey of several recent developments”. In: Journal of
Computational Physics 316 (2016), pp. 598–613. doi: 10.1016/j.jcp.2016.04.030.

[142] C. Simmendinger, M. Rahn, and D. Grünewald. GASPI Tutorial. Training course
at HLRS, Stuttgart. Jan. 2014.

[143] F. Singer-Villalobos. 8 Things You Should Know About GPGPU Technology. Ac-
cessed on Mar 14, 2019. Texas Advanced Computing Center, 2011. url: https:
//www.tacc.utexas.edu/documents/13601/88790/8Things.pdf.

57

https://doi.org/10.1002/num.22150
https://doi.org/10.1007/s10596-018-9743-7
https://doi.org/10.1007/978-3-319-05591-6_70,
https://doi.org/10.1007/s10596-015-9469-8
https://doi.org/10.1002/sapm197150293
https://doi.org/10.1016/j.ocemod.2013.06.001
https://doi.org/10.1016/j.ocemod.2013.06.001
https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/e-server_e_server_final_publishable_report_en.pdf
https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/e-server_e_server_final_publishable_report_en.pdf
https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/e-server_e_server_final_publishable_report_en.pdf
https://doi.org/10.1137/16M108817X
https://doi.org/10.1017/S0956792516000164
https://doi.org/10.1017/S0956792516000164
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1016/j.jcp.2016.04.030
https://www.tacc.utexas.edu/documents/13601/88790/8Things.pdf
https://www.tacc.utexas.edu/documents/13601/88790/8Things.pdf

Bibliography

[144] N. Singer. Astra supercomputer at Sandia Labs is fastest Arm-based machine on
TOP500 list. Accessed on Apr 30, 2019. Nov. 2018. url: https://share- ng.
sandia.gov/news/resources/news_releases/top_500/.

[145] N. Stahl. “Das Discontinuous-Galerkin-Verfahren für die 1D-Flachwassergleichungen”.
B. Sc. thesis. Friedrich-Alexander-University Erlangen-Nürnberg, 2016.

[146] H. Stengel, J. Treibig, G. Hager, and G. Wellein. “Quantifying Performance Bot-
tlenecks of Stencil Computations Using the Execution-Cache-Memory Model”. In:
Proceedings of the 29th ACM on International Conference on Supercomputing. 2015,
pp. 207–216. doi: 10.1145/2751205.2751240.

[147] E. Strohmeier, J. Dongarra, H. Simon, and M. Meuer. TOP500. Accessed on Mar
13, 2019. Nov. 2018. url: https://www.top500.org/lists/2018/11/.

[148] A. S. Tanenbaum and T. Austin. Rechnerarchitektur. 6th ed. Pearson, 2014. isbn:
978-3-86894-238-5.

[149] C. Thiele, M. Araya-Polo, F. O. Alpak, B. Riviere, and F. Frank. “Inexact hier-
archical scale separation: A two-scale approach for linear systems from discontinu-
ous Galerkin discretizations”. In: Computers & Mathematics with Applications 74.8
(2017), pp. 1769–1778. doi: 10.1016/j.camwa.2017.06.025.

[150] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. 3rd ed.
Springer, 2009. doi: 10.1007/978-3-540-49834-6.

[151] E. F. Toro, M. Spruce, and W. Speares. “Restoration of the contact surface in
the HLL-Riemann solver”. In: Shock Waves 4.1 (1994), pp. 25–34. doi: 10.1007/
BF01414629.

[152] M. P. Ueckermann and P. F. J. Lermusiaux. “Hybridizable discontinuous Galerkin
projection methods for Navier–Stokes and Boussinesq equations”. In: Journal of
Computational Physics 306 (2016), pp. 390–421. doi: 10.1016/j.jcp.2015.11.028.

[153] L. Umlauf and H. J. Burchard. “A generic length-scale equation for geophysical
turbulence models”. In: Journal of Marine Research 61.2 (2003), pp. 235–265. doi:
10.1357/002224003322005087.

[154] UNESCO. Tenth report of the joint panel on oceanographic tables and standards.
UNESCO Technical Papers in Marine Science 36. Paris: UNESCO, 1981.

[155] V. Vallaeys, T. Kärnä, P. Delandmeter, J. Lambrechts, A. M. Baptista, E. Deleer-
snijder, and E. Hanert. “Discontinuous Galerkin modeling of the Columbia River’s
coupled estuary-plume dynamics”. In: Ocean Modelling 124 (2018), pp. 111–124.
doi: 10.1016/j.ocemod.2018.02.004.

[156] S. Vater, N. Beisiegel, and J. Behrens. “A limiter-based well-balanced discontinuous
Galerkin method for shallow-water flows with wetting and drying: One-dimensional
case”. In: Advances in Water Resources 85 (2015), pp. 1–13. doi: 10 . 1016 / j.
advwatres.2015.08.008.

[157] C. B. Vreugdenhil. Numerical Methods for Shallow-Water Flow. Vol. 13. Water Sci-
ence and Technology Library. Springer, 1994. doi: 10.1007/978-94-015-8354-1.

[158] J. C. Warner, C. R. Sherwood, H. G. Arango, and R. P. Signell. “Performance of
four turbulence closure models implemented using a generic length scale method”.
In: Ocean Modelling 8 (2005), pp. 81–113. doi: 10.1016/j.ocemod.2003.12.003.

58

https://share-ng.sandia.gov/news/resources/news_releases/top_500/
https://share-ng.sandia.gov/news/resources/news_releases/top_500/
https://doi.org/10.1145/2751205.2751240
https://www.top500.org/lists/2018/11/
https://doi.org/10.1016/j.camwa.2017.06.025
https://doi.org/10.1007/978-3-540-49834-6
https://doi.org/10.1007/BF01414629
https://doi.org/10.1007/BF01414629
https://doi.org/10.1016/j.jcp.2015.11.028
https://doi.org/10.1357/002224003322005087
https://doi.org/10.1016/j.ocemod.2018.02.004
https://doi.org/10.1016/j.advwatres.2015.08.008
https://doi.org/10.1016/j.advwatres.2015.08.008
https://doi.org/10.1007/978-94-015-8354-1
https://doi.org/10.1016/j.ocemod.2003.12.003

[159] M. F. Wheeler. “An Elliptic Collocation-Finite Element Method with Interior Penal-
ties”. In: SIAM Journal on Numerical Analysis 15.1 (1978), pp. 152–161. doi: 10.
1137/0715010.

[160] S. Whitaker. “Flow in porous media I: A theoretical derivation of Darcy’s law”. In:
Transport in Porous Media 1.1 (1986), pp. 3–25. doi: 10.1007/BF01036523.

[161] T. Wilde, A. Auweter, and H. Shoukourian. “The 4 Pillar Framework for energy
efficient HPC data centers”. In: Computer Science – Research and Development
29.3–4 (2014), pp. 241–251. doi: 10.1007/s00450-013-0244-6.

[162] S. Williams, A. Waterman, and D. Patterson. “Roofline: an insightful visual per-
formance model for multicore architectures”. In: Communications of the ACM 52.4
(2009), pp. 65–76. doi: 10.1145/1498765.1498785.

[163] D. Wirasaet, E. J. Kubatko, C. E. Michoski, S. Tanaka, J. J. Westerink, and C.
Dawson. “Discontinuous Galerkin methods with nodal and hybrid modal/nodal tri-
angular, quadrilateral, and polygonal elements for nonlinear shallow water flow”. In:
Computer Methods in Applied Mechanics and Engineering 270 (2014), pp. 113–149.
doi: 10.1016/j.cma.2013.11.006.

[164] Y. Xing and X. Zhang. “Positivity-Preserving Well-Balanced Discontinuous Galerkin
Methods for the Shallow Water Equations on Unstructured Triangular Meshes”. In:
Journal of Scientific Computing 57.1 (2013), pp. 19–41. doi: 10.1007/s10915-013-
9695-y.

[165] Y. Xing, X. Zhang, and C.-W. Shu. “Positivity-preserving high order well-balanced
discontinuous Galerkin methods for the shallow water equations”. In: Advances in
Water Resources 33.12 (2010), pp. 1476–1493. doi: 10.1016/j.advwatres.2010.
08.005.

[166] B. Yan and R. A. Regueiro. “Superlinear Speedup Phenomenon in Parallel 3D Dis-
crete Element Method (DEM) Simulations of Complex-shaped Particles”. In: Par-
allel Computing 75 (2018), pp. 61–87. doi: 10.1016/j.parco.2018.03.007.

[167] M. Yang and Z.-J. Wang. “A Parameter-Free Generalized Moment Limiter for High-
Order Methods on Unstructured Grids”. In: AIAA, 47th Aerospace Sciences Meeting
including The New Horizons Forum and Aerospace Exposition, Orlando. 2009. doi:
10.2514/6.2009-605.

[168] M. Yang and Z.-J. Wang. “A Parameter-Free Generalized Moment Limiter for High-
Order Methods on Unstructured Grids”. In: Advances in Applied Mathematics and
Mechanics 1.4 (2009), pp. 451–480. doi: 10.4208/aamm.09-m0913.

59

https://doi.org/10.1137/0715010
https://doi.org/10.1137/0715010
https://doi.org/10.1007/BF01036523
https://doi.org/10.1007/s00450-013-0244-6
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1016/j.cma.2013.11.006
https://doi.org/10.1007/s10915-013-9695-y
https://doi.org/10.1007/s10915-013-9695-y
https://doi.org/10.1016/j.advwatres.2010.08.005
https://doi.org/10.1016/j.advwatres.2010.08.005
https://doi.org/10.1016/j.parco.2018.03.007
https://doi.org/10.2514/6.2009-605
https://doi.org/10.4208/aamm.09-m0913

Part B

Reprints of published journal articles

FESTUNG: A MATLAB/GNU Octave
toolbox for the discontinuous Galerkin

method, Part I: Diffusion operator

Paper 1

F. Frank, B. Reuter, V. Aizinger, and P. Knabner
Computers and Mathematics with Applications (2015)

https://doi.org/10.1016/j.camwa.2015.04.013
c© 2015 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2015.04.013

A multi-platform scaling study for an
OpenMP parallelization of a discontinuous

Galerkin ocean model

Paper 2

B. Reuter, V. Aizinger, and H. Köstler
Computers & Fluids (2015)

https://doi.org/10.1016/j.compfluid.2015.05.020
c© 2015 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compfluid.2015.05.020

FESTUNG: A MATLAB/GNU Octave
toolbox for the discontinuous Galerkin

method, Part II: Advection operator and
slope limiting

Paper 3

B. Reuter, V. Aizinger, M. Wieland, F. Frank, and P. Knabner
Computers and Mathematics with Applications (2016)

https://doi.org/10.1016/j.camwa.2016.08.006
c© 2016 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2016.08.006

Energy efficiency of the simulation of
three-dimensional coastal ocean

circulation on modern commodity and
mobile processors

Paper 4

M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek
Computer Science – Research and Development (2016)

https://doi.org/10.1007/s00450-016-0324-5
c© 2016 Springer-Verlag Berlin Heidelberg

https://doi.org/10.1007/s00450-016-0324-5

Anisotropic slope limiting for
discontinuous Galerkin methods

Paper 5
V. Aizinger, A. Kośık, D. Kuzmin, and B. Reuter

International Journal for Numerical Methods in Fluids (2017)
https://doi.org/10.1002/fld.4360

c© 2017 John Wiley & Sons, Ltd.

https://doi.org/10.1002/fld.4360

FESTUNG: A MATLAB/GNU Octave
toolbox for the discontinuous Galerkin

method, Part III: Hybridized discontinuous
Galerkin (HDG) formulation

Paper 6

A. Jaust, B. Reuter, V. Aizinger, J. Schütz, and P. Knabner
Computers and Mathematics with Applications (2018)

https://doi.org/10.1016/j.camwa.2018.03.045
c© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2018.03.045

Locally Filtered Transport for
computational efficiency in

multi-component advection-reaction
models

Paper 7

H. Hajduk, B. R. Hodges, V. Aizinger, and B. Reuter
Environmental Modelling & Software (2018)

https://doi.org/10.1016/j.envsoft.2018.01.003
c© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.envsoft.2018.01.003

Discontinuous Galerkin method for
coupling hydrostatic free surface flows to

saturated subsurface systems

Paper 8

B. Reuter, A. Rupp, V. Aizinger, and P. Knabner
Computers and Mathematics with Applications (2019)

https://doi.org/10.1016/j.camwa.2018.12.020
c© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2018.12.020

	Danksagung (German)
	Zusammenfassung (German)
	Preface
	A Extended summary
	1 Introduction
	1.1 Motivation
	1.2 Structure of this extended summary
	1.3 Notation

	2 Mathematical models
	2.1 Three-dimensional baroclinic shallow-water flow
	2.2 Groundwater flow
	2.3 Coupled model

	3 The discontinuous Galerkin method
	3.1 Types of discontinuous Galerkin methods
	3.2 Notation and basic definitions
	3.3 LDG discretization for three-dimensional shallow-water flow
	3.4 LDG discretization of saturated groundwater flow
	3.5 Coupled model
	3.6 Slope limiting
	3.7 Locally filtered transport

	4 High performance computing aspects
	4.1 Computing architectures
	4.2 Node-level performance
	4.3 Parallelization and scalability
	4.4 Energy efficiency

	5 Implementation aspects and software packages
	5.1 FESTUNG
	5.2 UTBEST3D

	6 Summary and outlook
	Bibliography

	B Reprints of published journal articles
	1 FrankRAK2015
	2 ReuterAK2015
	3 ReuterAWFK2016
	4 GevelerRAGT2016
	5 AizingerKKR2017
	6 JaustRASK2018
	7 HajdukHAR2018
	8 ReuterRAK2019

