1,503 research outputs found

    Signal processing and machine learning techniques for human verification based on finger textures

    Get PDF
    PhD ThesisIn recent years, Finger Textures (FTs) have attracted considerable attention as potential biometric characteristics. They can provide robust recognition performance as they have various human-speci c features, such as wrinkles and apparent lines distributed along the inner surface of all ngers. The main topic of this thesis is verifying people according to their unique FT patterns by exploiting signal processing and machine learning techniques. A Robust Finger Segmentation (RFS) method is rst proposed to isolate nger images from a hand area. It is able to detect the ngers as objects from a hand image. An e cient adaptive nger segmentation method is also suggested to address the problem of alignment variations in the hand image called the Adaptive and Robust Finger Segmentation (ARFS) method. A new Multi-scale Sobel Angles Local Binary Pattern (MSALBP) feature extraction method is proposed which combines the Sobel direction angles with the Multi-Scale Local Binary Pattern (MSLBP). Moreover, an enhanced method called the Enhanced Local Line Binary Pattern (ELLBP) is designed to e ciently analyse the FT patterns. As a result, a powerful human veri cation scheme based on nger Feature Level Fusion with a Probabilistic Neural Network (FLFPNN) is proposed. A multi-object fusion method, termed the Finger Contribution Fusion Neural Network (FCFNN), combines the contribution scores of the nger objects. The veri cation performances are examined in the case of missing FT areas. Consequently, to overcome nger regions which are poorly imaged a method is suggested to salvage missing FT elements by exploiting the information embedded within the trained Probabilistic Neural Network (PNN). Finally, a novel method to produce a Receiver Operating Characteristic (ROC) curve from a PNN is suggested. Furthermore, additional development to this method is applied to generate the ROC graph from the FCFNN. Three databases are employed for evaluation: The Hong Kong Polytechnic University Contact-free 3D/2D (PolyU3D2D), Indian Institute of Technology (IIT) Delhi and Spectral 460nm (S460) from the CASIA Multi-Spectral (CASIAMS) databases. Comparative simulation studies con rm the e ciency of the proposed methods for human veri cation. The main advantage of both segmentation approaches, the RFS and ARFS, is that they can collect all the FT features. The best results have been benchmarked for the ELLBP feature extraction with the FCFNN, where the best Equal Error Rate (EER) values for the three databases PolyU3D2D, IIT Delhi and CASIAMS (S460) have been achieved 0.11%, 1.35% and 0%, respectively. The proposed salvage approach for the missing feature elements has the capability to enhance the veri cation performance for the FLFPNN. Moreover, ROC graphs have been successively established from the PNN and FCFNN.the ministry of higher education and scientific research in Iraq (MOHESR); the Technical college of Mosul; the Iraqi Cultural Attach e; the active people in the MOHESR, who strongly supported Iraqi students

    Single-Sample Finger Vein Recognition via Competitive and Progressive Sparse Representation

    Get PDF
    As an emerging biometric technology, finger vein recognition has attracted much attention in recent years. However, single-sample recognition is a practical and longstanding challenge in this field, referring to only one finger vein image per class in the training set. In single-sample finger vein recognition, the illumination variations under low contrast and the lack of information of intra-class variations severely affect the recognition performance. Despite of its high robustness against noise and illumination variations, sparse representation has rarely been explored for single-sample finger vein recognition. Therefore, in this paper, we focus on developing a new approach called Progressive Sparse Representation Classification (PSRC) to address the challenging issue of single-sample finger vein recognition. Firstly, as residual may become too large under the scenario of single-sample finger vein recognition, we propose a progressive strategy for representation refinement of SRC. Secondly, to adaptively optimize progressions, a progressive index called Max Energy Residual Index (MERI) is defined as the guidance. Furthermore, we extend PSRC to bimodal biometrics and propose a Competitive PSRC (C-PSRC) fusion approach. The C-PSRC creates more discriminative fused sample and fusion dictionary by comparing residual errors of different modalities. By comparing with several state-of-the-art methods on three finger vein benchmarks, the superiority of the proposed PSRC and C-PSRC is clearly demonstrated

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    An Analytical Survey on Vein Pattern Recognition

    Get PDF
    Biometric is term of science to identify a person identity using their physiological features. Currently, vein pattern recognition has attracted the attention of the technology and industry all over the world. A vein is network of blood vessels under the skin of an individual. The vascular pattern is different for every person in the same part or region of the body. It is stable till very long age. As the veins are underneath the skin it is very difficult for intruder or forger to copy the feature. This uniqueness and strong immunity from intruders make it more potent biometric system which avails us secure features for individual identity verification. This paper involves the description of vein pattern recognition, its requirement and its importance in biometric system. Different feature extraction algorithms are reviewed as independent component analysis, principal component analysis method. For classification in vein pattern recognition we have reviewed support vector machine and neural network techniques. Parameters are described based on which results are computed like true positive, false positive, true negative, false negative, accuracy and precision

    The fundamentals of unimodal palmprint authentication based on a biometric system: A review

    Get PDF
    Biometric system can be defined as the automated method of identifying or authenticating the identity of a living person based on physiological or behavioral traits. Palmprint biometric-based authentication has gained considerable attention in recent years. Globally, enterprises have been exploring biometric authorization for some time, for the purpose of security, payment processing, law enforcement CCTV systems, and even access to offices, buildings, and gyms via the entry doors. Palmprint biometric system can be divided into unimodal and multimodal. This paper will investigate the biometric system and provide a detailed overview of the palmprint technology with existing recognition approaches. Finally, we introduce a review of previous works based on a unimodal palmprint system using different databases

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Improved methods for finger vein identification using composite median-wiener filter and hierarchical centroid features extraction

    Get PDF
    Finger vein identification is a potential new area in biometric systems. Finger vein patterns contain highly discriminative characteristics, which are difficult to be forged because they reside underneath the skin of the finger and require a specific device to capture them. Research have been carried out in this field but there is still an unresolved issue related to low-quality data due to data capturing and processing. Low-quality data have caused errors in the feature extraction process and reduced identification performance rate in finger vein identification. To address this issue, a new image enhancement and feature extraction methods were developed to improve finger vein identification. The image enhancement, Composite Median-Wiener (CMW) filter would improve image quality and preserve the edges of the finger vein image. Next, the feature extraction method, Hierarchical Centroid Feature Method (HCM) was fused with statistical pixel-based distribution feature method at the feature-level fusion to improve the performance of finger vein identification. These methods were evaluated on public SDUMLA-HMT and FV-USM finger vein databases. Each database was divided into training and testing sets. The average result of the experiments conducted was taken to ensure the accuracy of the measurements. The k-Nearest Neighbor classifier with city block distance to match the features was implemented. Both these methods produced accuracy as high as 97.64% for identification rate and 1.11% of equal error rate (EER) for measures verification rate. These showed that the accuracy of the proposed finger vein identification method is higher than the one reported in the literature. As a conclusion, the results have proven that the CMW filter and HCM have significantly improved the accuracy of finger vein identification
    corecore