135 research outputs found

    The fundamentals of unimodal palmprint authentication based on a biometric system: A review

    Get PDF
    Biometric system can be defined as the automated method of identifying or authenticating the identity of a living person based on physiological or behavioral traits. Palmprint biometric-based authentication has gained considerable attention in recent years. Globally, enterprises have been exploring biometric authorization for some time, for the purpose of security, payment processing, law enforcement CCTV systems, and even access to offices, buildings, and gyms via the entry doors. Palmprint biometric system can be divided into unimodal and multimodal. This paper will investigate the biometric system and provide a detailed overview of the palmprint technology with existing recognition approaches. Finally, we introduce a review of previous works based on a unimodal palmprint system using different databases

    Finger vein identification based on transfer learning of AlexNet

    Get PDF
    Nowadays finger vein-based validation systems are getting extra attraction among other authentication systems due to high security in terms of ensuring data confidentiality. This system works by recognizing patterns from finger vein images and these images are captured using a camera based on near-infrared technology. In this research, we focused finger vein identification system by using our own finger vein dataset, we trained it with transfer learning of AlexNet model and verified by test images. We have done three different experiments with the same dataset but different sizes of data. Therefore, we obtained varied predictability with 95% accuracy from the second experiment

    Improved methods for finger vein identification using composite median-wiener filter and hierarchical centroid features extraction

    Get PDF
    Finger vein identification is a potential new area in biometric systems. Finger vein patterns contain highly discriminative characteristics, which are difficult to be forged because they reside underneath the skin of the finger and require a specific device to capture them. Research have been carried out in this field but there is still an unresolved issue related to low-quality data due to data capturing and processing. Low-quality data have caused errors in the feature extraction process and reduced identification performance rate in finger vein identification. To address this issue, a new image enhancement and feature extraction methods were developed to improve finger vein identification. The image enhancement, Composite Median-Wiener (CMW) filter would improve image quality and preserve the edges of the finger vein image. Next, the feature extraction method, Hierarchical Centroid Feature Method (HCM) was fused with statistical pixel-based distribution feature method at the feature-level fusion to improve the performance of finger vein identification. These methods were evaluated on public SDUMLA-HMT and FV-USM finger vein databases. Each database was divided into training and testing sets. The average result of the experiments conducted was taken to ensure the accuracy of the measurements. The k-Nearest Neighbor classifier with city block distance to match the features was implemented. Both these methods produced accuracy as high as 97.64% for identification rate and 1.11% of equal error rate (EER) for measures verification rate. These showed that the accuracy of the proposed finger vein identification method is higher than the one reported in the literature. As a conclusion, the results have proven that the CMW filter and HCM have significantly improved the accuracy of finger vein identification

    Handbook of Vascular Biometrics

    Get PDF

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Palm Vein Identification Based on Hybrid Feature Selection Model

    Get PDF
    Palm Vein Identification (PVI) is a modern biometric security technique used for enhancing security and authentication systems. The key characteristics of palm vein patterns include its uniqueness to each individual, its unforgettability, non-intrusiveness and its ability for disallowing unauthorized persons. However, the extracted features from the palm vein patterns are huge with high redundancy. In this paper, we propose a combined model of two-Dimensional Discrete Wavelet Transform, Principal Component Analysis (PCA), and Particle Swarm Optimization (PSO) (2D-DWTPP) that feeds wrapper model with an optimal subset of features to enhance the prediction accuracy of -palm vein patterns. The 2D-DWT extract features from palm vein images, using the PCA to reduce the redundancy in palm vein features. The system has been trained to select high recognition features based on the wrapper model. The proposed system uses four classifiers as an objective function to determine PVI which include Support Vector Machine (SVM), K Nearest Neighbor (KNN), Decision Tree (DT) and Naïve Bayes (NB). The empirical results proved that the proposed model has the best results with SVM. Moreover, our proposed 2D-DWTPP model has been evaluated and the results show remarkable efficiency in comparison with AlexNet and other classifiers without feature selection. Experimentally, the proposed model has better accuracy as reflected by 98.65% whereas AlexNet has 63.5% accuracy and the classifier without feature selection process has 78.79% accuracy

    Fingervein Verification using Convolutional Multi-Head Attention Network

    Full text link
    Biometric verification systems are deployed in various security-based access-control applications that require user-friendly and reliable person verification. Among the different biometric characteristics, fingervein biometrics have been extensively studied owing to their reliable verification performance. Furthermore, fingervein patterns reside inside the skin and are not visible outside; therefore, they possess inherent resistance to presentation attacks and degradation due to external factors. In this paper, we introduce a novel fingervein verification technique using a convolutional multihead attention network called VeinAtnNet. The proposed VeinAtnNet is designed to achieve light weight with a smaller number of learnable parameters while extracting discriminant information from both normal and enhanced fingervein images. The proposed VeinAtnNet was trained on the newly constructed fingervein dataset with 300 unique fingervein patterns that were captured in multiple sessions to obtain 92 samples per unique fingervein. Extensive experiments were performed on the newly collected dataset FV-300 and the publicly available FV-USM and FV-PolyU fingervein dataset. The performance of the proposed method was compared with five state-of-the-art fingervein verification systems, indicating the efficacy of the proposed VeinAtnNet.Comment: Accepted in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 202

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers
    corecore