1,242 research outputs found

    The Application of Two-level Attention Models in Deep Convolutional Neural Network for Fine-grained Image Classification

    Full text link
    Fine-grained classification is challenging because categories can only be discriminated by subtle and local differences. Variances in the pose, scale or rotation usually make the problem more difficult. Most fine-grained classification systems follow the pipeline of finding foreground object or object parts (where) to extract discriminative features (what). In this paper, we propose to apply visual attention to fine-grained classification task using deep neural network. Our pipeline integrates three types of attention: the bottom-up attention that propose candidate patches, the object-level top-down attention that selects relevant patches to a certain object, and the part-level top-down attention that localizes discriminative parts. We combine these attentions to train domain-specific deep nets, then use it to improve both the what and where aspects. Importantly, we avoid using expensive annotations like bounding box or part information from end-to-end. The weak supervision constraint makes our work easier to generalize. We have verified the effectiveness of the method on the subsets of ILSVRC2012 dataset and CUB200_2011 dataset. Our pipeline delivered significant improvements and achieved the best accuracy under the weakest supervision condition. The performance is competitive against other methods that rely on additional annotations

    Object Discovery From a Single Unlabeled Image by Mining Frequent Itemset With Multi-scale Features

    Full text link
    TThe goal of our work is to discover dominant objects in a very general setting where only a single unlabeled image is given. This is far more challenge than typical co-localization or weakly-supervised localization tasks. To tackle this problem, we propose a simple but effective pattern mining-based method, called Object Location Mining (OLM), which exploits the advantages of data mining and feature representation of pre-trained convolutional neural networks (CNNs). Specifically, we first convert the feature maps from a pre-trained CNN model into a set of transactions, and then discovers frequent patterns from transaction database through pattern mining techniques. We observe that those discovered patterns, i.e., co-occurrence highlighted regions, typically hold appearance and spatial consistency. Motivated by this observation, we can easily discover and localize possible objects by merging relevant meaningful patterns. Extensive experiments on a variety of benchmarks demonstrate that OLM achieves competitive localization performance compared with the state-of-the-art methods. We also evaluate our approach compared with unsupervised saliency detection methods and achieves competitive results on seven benchmark datasets. Moreover, we conduct experiments on fine-grained classification to show that our proposed method can locate the entire object and parts accurately, which can benefit to improving the classification results significantly

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras

    Deep Learning Based Fine Grained Image Classification

    Get PDF
    Image classification, specifically object classification is the focused research area in the computer vision and machine learning field in the past decade. In image classification a label or category is assigned to an input image based on its content. With breakthroughs in deep learning-based approaches, performance of image classification models' has improved significantly, particularly fine-grained image classification, which includes discriminating between items of the same category with slight changes. The object classification can be categorised as coarse grained object classification, which identifies highly diverse object categories, such as an elephant and a bus. One example of this type of object classification is a bus and an elephant. On the other hand, fine-grained image categorization seeks to recognise photos as belonging to distinct species of animals, birds, or plants, as well as distinct models of automobiles, versions of aircraft, and so on. The purpose of this study is to evaluate previously published research that investigates deep learning techniques for the classification of fine-grained images and to compare the effectiveness of these techniques using datasets that are open to the public

    Statistical methods for fine-grained retail product recognition

    Get PDF
    In recent years, computer vision has become a major instrument in automating retail processes with emerging smart applications such as shopper assistance, visual product search (e.g., Google Lens), no-checkout stores (e.g., Amazon Go), real-time inventory tracking, out-of-stock detection, and shelf execution. At the core of these applications lies the problem of product recognition, which poses a variety of new challenges in contrast to generic object recognition. Product recognition is a special instance of fine-grained classification. Considering the sheer diversity of packaged goods in a typical hypermarket, we are confronted with up to tens of thousands of classes, which, particularly if under the same product brand, tend to have only minute visual differences in shape, packaging texture, metric size, etc., making them very difficult to discriminate from one another. Another challenge is the limited number of available datasets, which either have only a few training examples per class that are taken under ideal studio conditions, hence requiring cross-dataset generalization, or are captured from the shelf in an actual retail environment and thus suffer from issues like blur, low resolution, occlusions, unexpected backgrounds, etc. Thus, an effective product classification system requires substantially more information in addition to the knowledge obtained from product images alone. In this thesis, we propose statistical methods for a fine-grained retail product recognition. In our first framework, we propose a novel context-aware hybrid classification system for the fine-grained retail product recognition problem. In the second framework, state-of-the-art convolutional neural networks are explored and adapted to fine-grained recognition of products. The third framework, which is the most significant contribution of this thesis, presents a new approach for fine-grained classification of retail products that learns and exploits statistical context information about likely product arrangements on shelves, incorporates visual hierarchies across brands, and returns recognition results as "confidence sets" that are guaranteed to contain the true class at a given confidence leve

    Truck model recognition for an automatic overload detection system based on the improved MMAL-Net

    Get PDF
    Efficient and reliable transportation of goods through trucks is crucial for road logistics. However, the overloading of trucks poses serious challenges to road infrastructure and traffic safety. Detecting and preventing truck overloading is of utmost importance for maintaining road conditions and ensuring the safety of both road users and goods transported. This paper introduces a novel method for detecting truck overloading. The method utilizes the improved MMAL-Net for truck model recognition. Vehicle identification involves using frontal and side truck images, while APPM is applied for local segmentation of the side image to recognize individual parts. The proposed method analyzes the captured images to precisely identify the models of trucks passing through automatic weighing stations on the highway. The improved MMAL-Net achieved an accuracy of 95.03% on the competitive benchmark dataset, Stanford Cars, demonstrating its superiority over other established methods. Furthermore, our method also demonstrated outstanding performance on a small-scale dataset. In our experimental evaluation, our method achieved a recognition accuracy of 85% when the training set consisted of 20 sets of photos, and it reached 100% as the training set gradually increased to 50 sets of samples. Through the integration of this recognition system with weight data obtained from weighing stations and license plates information, the method enables real-time assessment of truck overloading. The implementation of the proposed method is of vital importance for multiple aspects related to road traffic safety
    corecore