12 research outputs found

    A New Action Recognition Framework for Video Highlights Summarization in Sporting Events

    Full text link
    To date, machine learning for human action recognition in video has been widely implemented in sports activities. Although some studies have been successful in the past, precision is still the most significant concern. In this study, we present a high-accuracy framework to automatically clip the sports video stream by using a three-level prediction algorithm based on two classical open-source structures, i.e., YOLO-v3 and OpenPose. It is found that by using a modest amount of sports video training data, our methodology can perform sports activity highlights clipping accurately. Comparing with the previous systems, our methodology shows some advantages in accuracy. This study may serve as a new clipping system to extend the potential applications of the video summarization in sports field, as well as facilitates the development of match analysis system.Comment: 18 pages, 3 figures, 4 table

    Differentiable Grammars for Videos

    Full text link
    This paper proposes a novel algorithm which learns a formal regular grammar from real-world continuous data, such as videos. Learning latent terminals, non-terminals, and production rules directly from continuous data allows the construction of a generative model capturing sequential structures with multiple possibilities. Our model is fully differentiable, and provides easily interpretable results which are important in order to understand the learned structures. It outperforms the state-of-the-art on several challenging datasets and is more accurate for forecasting future activities in videos. We plan to open-source the code. https://sites.google.com/view/differentiable-grammar
    corecore