1,511 research outputs found

    Fine-Grained Radio Resource Management to Control Interference in Dense Wi-Fi Networks

    Get PDF
    In spite of the enormous popularity of Wi-Fienabled devices, the utilization of Wi-Fi radio resources (e.g. RF spectrum and transmission power levels) at Access Points (APs) is degraded in current decentralized Radio Resource Management (RRM) schemes. Most state of the art central control solutions apply configurations in which the network-wide impacts of the involved parameters and their mutual relationships are ignored. In this paper, we propose an algorithm for jointly adjusting the transmission power levels and optimizing the RF channel assignment of APs by taking into account the flows’ required qualities while minimizing their interference impacts throughout the network. The proposed solution is tailored for an operatoragnostic and Software Defined Wireless Networking (SDWN)- based centralised RRM in dense Wi-Fi networks. Our extensive simulation results validate the performance improvement of the proposed algorithm compared to the main state of the art alternative by showing more than 25% higher spectrum efficiency, satisfying the users’ demands and further mitigating the networkwide interference through a flow-based and quality-oriented power level adjustment

    Fine-Grained Radio Resource Management to Control Interference in Dense Wi-Fi Networks

    Get PDF
    In spite of the enormous popularity of Wi-Fienabled devices, the utilisation of Wi-Fi radio resources (e.g. RF spectrum and transmission power levels) at Access Points (APs) is degraded in current decentralised Radio Resource Management (RRM) schemes. Most state of the art centralised control solutions apply configurations in which the network-wide impacts of the involved parameters and their mutual relationships are ignored. In this paper, we propose an algorithm for jointly adjusting the transmission power levels and optimising the RF channel assignment of APs by taking into account the flows’ required qualities while minimising their interference impact throughout the network. The proposed solution is tailored for an operatoragnostic and Software Defined Wireless Networking (SDWN)- based centralised RRM in dense Wi-Fi networks. Our extensive simulation results validate the performance improvements of the proposed algorithm compared to the main state of the art alternative by showing more than 25% higher spectrum efficiency, satisfying the users’ demands and further mitigating the networkwide interference through flow-based and quality-oriented power level adjustment

    Large-Scale Distributed Internet-based Discovery Mechanism for Dynamic Spectrum Allocation

    Full text link
    Scarcity of frequencies and the demand for more bandwidth is likely to increase the need for devices that utilize the available frequencies more efficiently. Radios must be able to dynamically find other users of the frequency bands and adapt so that they are not interfered, even if they use different radio protocols. As transmitters far away may cause as much interference as a transmitter located nearby, this mechanism can not be based on location alone. Central databases can be used for this purpose, but require expensive infrastructure and planning to scale. In this paper, we propose a decentralized protocol and architecture for discovering radio devices over the Internet. The protocol has low resource requirements, making it suitable for implementation on limited platforms. We evaluate the protocol through simulation in network topologies with up to 2.3 million nodes, including topologies generated from population patterns in Norway. The protocol has also been implemented as proof-of-concept in real Wi-Fi routers.Comment: Accepted for publication at IEEE DySPAN 201

    A dynamic access point allocation algorithm for dense wireless LANs using potential game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm

    Quality of Service Oriented Access Point Selection Framework for Large Wi-Fi Networks

    Get PDF
    This paper addresses the problem of Access Point (AP) selection in large Wi-Fi networks. Unlike current solutions that rely on Received Signal Strength (RSS) to determine the best AP that could serve a wireless user’s request, we propose a novel framework that considers the Quality of Service (QoS) requirements of the user’s data flow. The proposed framework relies on a function reflecting the suitability of a Wi-Fi AP to satisfy the QoS requirements of the data flow. The framework takes advantage of the flexibility and centralised nature of Software Defined Networking (SDN). A performance comparison of this algorithm developed through an SDN-based simulator shows significant achievements against other state of the art solutions in terms of provided QoS and improved wireless network capacity

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    QoS aware radio access technology selection framework in heterogeneous networks using SDN

    Get PDF
    This paper addresses the problem of radio access technology (RAT) selection in heterogeneous networks (HetNets). Current approaches rely on signal related metrics such as signal to interference plus noise ratio (SINR) for selection of the best network for the wireless user. However, such approaches do not take into account the quality of service (QoS) requirements of wireless users and therefore often do not connect them to the most suitable network. We propose a QoS aware RAT selection framework for HetNets based on software-defined networking (SDN). The proposed framework implements a RAT selection strategy that reflects QoS requirements of downlink flows using a metric called fittingness factor (FF). The framework relies on the flexibility and centralised nature of SDN to implement monitoring and RAT capacity assessment mechanisms that help in the realisation of the selection strategy. The simulation campaign illustrates the important gains achieved by our RAT selection framework in terms of data rates assigned to the wireless users, their satisfaction, and their quality of experience (QoE) compared against other state of the art RAT selection solutions
    • …
    corecore