6,554 research outputs found

    Shape optimisation with multiresolution subdivision surfaces and immersed finite elements

    Get PDF
    We develop a new optimisation technique that combines multiresolution subdivision surfaces for boundary description with immersed finite elements for the discretisation of the primal and adjoint problems of optimisation. Similar to wavelets multiresolution surfaces represent the domain boundary using a coarse control mesh and a sequence of detail vectors. Based on the multiresolution decomposition efficient and fast algorithms are available for reconstructing control meshes of varying fineness. During shape optimisation the vertex coordinates of control meshes are updated using the computed shape gradient information. By virtue of the multiresolution editing semantics, updating the coarse control mesh vertex coordinates leads to large-scale geometry changes and, conversely, updating the fine control mesh coordinates leads to small-scale geometry changes. In our computations we start by optimising the coarsest control mesh and refine it each time the cost function reaches a minimum. This approach effectively prevents the appearance of non-physical boundary geometry oscillations and control mesh pathologies, like inverted elements. Independent of the fineness of the control mesh used for optimisation, on the immersed finite element grid the domain boundary is always represented with a relatively fine control mesh of fixed resolution. With the immersed finite element method there is no need to maintain an analysis suitable domain mesh. In some of the presented two- and three-dimensional elasticity examples the topology derivative is used for creating new holes inside the domain.The partial support of the EPSRC through grant # EP/G008531/1 and EC through Marie Curie Actions (IAPP) program CASOPT project are gratefully acknowledged.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.cma.2015.11.01

    Feature-Adaptive and Hierarchical Subdivision Gradient Meshes

    Get PDF
    Gradient meshes, an advanced vector graphics primitive, are widely used by designers for creating scalable vector graphics. Traditional variants require a regular rectangular topology, which is a severe design restriction. The more advanced subdivision gradient mesh allows for an arbitrary manifold topology and is based on subdivision techniques to define the resulting colour surface. This also allows the artists to manipulate the geometry and colours at various levels of subdivision. Recent advances allow for the interpolation of both geometry and colour, local detail following edits at coarser subdivision levels and sharp colour transitions. A shortcoming of all existing methods is their dependence on global refinement, which makes them unsuitable for real-time (commercial) design applications. We present a novel method that incorporates the idea of feature-adaptive subdivision and uses approximating patches suitable for hardware tessellation with real-time performance. Further novel features include multiple interaction mechanisms and self-intersection prevention during interactive design/editing

    Adaptive image vectorisation and brushing using mesh colours

    Get PDF
    We propose the use of curved triangles and mesh colours as a vector primitive for image vectorisation. We show that our representation has clear benefits for rendering performance, texture detail, as well as further editing of the resulting vector images. The proposed method focuses on efficiency, but it still leads to results that compare favourably with those from previous work. We show results over a variety of input images ranging from photos, drawings, paintings, all the way to designs and cartoons. We implemented several editing workflows facilitated by our representation: interactive user-guided vectorisation, and novel raster-style feature-aware brushing capabilities
    corecore