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Feature-Adaptive and Hierarchical Subdivision Gradient Meshes

J. Zhou, G.J. Hettinga, S. Houwink and J. Kosinka

Bernoulli Institute, University of Groningen, Groningen, The Netherlands

Abstract
Gradient meshes, an advanced vector graphics primitive, are widely used by designers for creating scalable vector graphics.
Traditional variants require a regular rectangular topology, which is a severe design restriction. The more advanced subdivision
gradient mesh allows for an arbitrary manifold topology and is based on subdivision techniques to define the resulting colour
surface. This also allows the artists to manipulate the geometry and colours at various levels of subdivision. Recent advances
allow for the interpolation of both geometry and colour, local detail following edits at coarser subdivision levels and sharp colour
transitions. A shortcoming of all existing methods is their dependence on global refinement, which makes them unsuitable for
real-time (commercial) design applications. We present a novel method that incorporates the idea of feature-adaptive subdivision
and uses approximating patches suitable for hardware tessellation with real-time performance. Further novel features include
multiple interaction mechanisms and self-intersection prevention during interactive design/editing.

Keywords: image processing, curves & surfaces, modelling

CCS Concepts: • Imaging and Video → Image Processing; •Modelling → Parametric Curves and Surfaces

1. Introduction

The gradient mesh is a powerful vector graphics primitive that al-
lows for the creation and manipulation of scalable vector graph-
ics; see, e.g. [SLWS07, BLHK18]. The traditional gradient mesh is
available in several commercial design applications such as Adobe
Illustrator as well as in open source alternatives such as Inkscape.
The existing interfaces allow positional and colour data to be as-
signed to mesh vertices, where gradient handles define the curved
geometry and colour transitions. The meshes require regular rectan-
gular topology and are represented as a grid of bicubic patches. The
regularity requirement is a severe restriction on the artist and con-
sequently the resulting colour surface: adding local detail requires
global mesh refinement.

The subdivision gradient mesh primitive improves upon the (tra-
ditional) gradient mesh primitive by allowing an arbitrary manifold
topology, provided that the faces are convex [LKSD17, SL17]. The
resulting colour surface is obtained by applying a single ternary sub-
division step to the input mesh, followed by Catmull–Clark subdi-
vision [CC78] to the limit. This ensures an almost everywhere C2

continuous colour surface. Hierarchical editing is possible by al-
lowing the artist to manipulate the geometry and colours at various
levels of subdivision. Recent advances allow for the interpolation

of both geometry and colour, local detail following edits at coarser
subdivision levels and support for sharp colour transitions [VK18].

Methods currently incorporating subdivision gradient meshes re-
quire multiple steps of global Catmull–Clark subdivision both to
represent the finest edits and to obtain a smooth surface that is close
to the actual limit surface. As the number of faces grows exponen-
tially with the number of subdivision steps and current hardware
performance ismostlymemory restricted, suchmethods are not suit-
able for real-time (commercial) design applications.

Our novel subdivision gradient mesh representation and render-
ing method address the above limitations; see Figure 1. We

1. modify and compare approximating patches for Catmull–Clark
subdivision surfaces that are suitable for hardware tessellation
to the setting of subdivision gradient meshes;

2. present a novel and real-time method that uses the idea of local
feature-adaptive subdivision (FAS) in combination with hierar-
chical editing;

3. design an index mapping between vertices, (half-)edges and
faces across subdivision levels for efficient detail tracking;

4. investigate and discuss trade-offs between visual quality and
performance;
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Figure 1: Different subdivision levels and hierarchical edits of our feature-adaptive and hierarchical subdivision gradient mesh showcased
on a cherry model. (a) The initial mesh consists of ten polygons. (b) The edited mesh at level 0 after geometry and colour editing. Level 0 is
the mesh after an initial ternary step, here shown tessellated. (c) The corresponding rendering. (d) The edited model at level 4. (e) Back at
level 0, we bend the stalk to the right by editing only 6 points; the finer edits at level 4 follow the overall shape change. (f) The locally edited
model at level 5. We add some texture at the top of the stalk and adjust the shape of the bottom of the stalk. (g) The underlying mesh required
for traditional mesh subdivision [VK18] has 78, 336 polygons. (h) The mesh generated using our method after the same amount of editing
has only 1371 polygons. Our method supports true hierarchical yet fully local editing, which allows the artist to manipulate the geometry and
colour at any level of subdivision.

5. provide multiple user interface improvements, among which an
indication of the region of influence of edits, and real-time self-
intersection prevention while editing geometry.

We start by reviewing relevant related work in Section 2. A tech-
nical overview of the required building blocks is presented in Sec-
tion 3. A summary of how these building blocks are adapted and
incorporated in the design of our novel method is provided in Sec-
tion 4. Improvements to the user interface are presented in Section 5.
We then showcase the results in terms of performance and visual
quality in Section 6. Several trade-offs and choices that were made,
limitations and future work are discussed in Section 7. Finally we
conclude the paper in Section 8.

2. Related Work

The basis of our approach is the gradient mesh [BB13]. This vector
graphics primitive smoothly interpolates colour through the use of
bicubic patches that are logically aligned in a rectangular structure.
The first appearance of this traditional type of gradient mesh was
in Adobe Illustrator [Sys98]. Modified versions are now available
also in Inkscape and CorelDRAW [BLHK18], and [BHEK21] intro-
duced a version based on mesh colours. However, the regular topol-
ogy requirement and lack of support for local refinement limit its
usability and expressiveness, mostly due to an extensive number of
patches that are generated. The regular topology restriction has been
addressed and alleviated by using either generalised barycentric
coordinates [LJH13, HBK19], loop subdivision surfaces [Loo87]
or Catmull–Clark subdivision surfaces [LKSD17]. The latter ap-
proach, often called the subdivision gradient mesh, is especially use-
ful as it has basically the same functionality as traditional gradient
meshes, but with the added advantage of unstructured topology and
increased smoothness.

A recent extension [VK18] supports exact geometry interpola-
tion, hierarchical edits and sharp colour transitions, and is therefore
more versatile than the earlier mentioned techniques. However, al-
though local edits are possible in their method, they are evaluated
and rendered using global subdivision. In contrast, we introduce a

truly local approach not only for editing, but also for evaluation
and rendering.

As is well known from the context of 3D modelling and ani-
mation [NLMD12], naive use of subdivision surfaces drastically
influences memory and rendering performance. This naturally
applies also in our context of subdivision gradient meshes, where
interactive edits are indispensable. We borrow several techniques
and ideas for real-time approximation of Catmull–Clark surfaces
using hardware tessellation. Patches used in these techniques are
called approximate Catmull–Clark (ACC) patches. Prime examples
of such approximation schemes are ACC1 [LS08] using bicubic
patches and ACC2 [LSNC09] using Gregory patches [Gre74,
Lon87]. Generalised Gregory patches [HK18] can be be used to
create a generalisation of ACC2 for arbitrary valency faces includ-
ing their GPU treatment [HBK18]. The idea of FAS [NLMD12]
allows for local subdivision near features. The OpenSubDiv li-
brary [Pix21] uses some of these elements to render subdivision
surfaces efficiently using both the CPU and the GPU.

Our contribution focuses on real-time rendering of subdivi-
sion gradient meshes so that designers can interactively edit and
manipulate them. Additionally, we also allow the possibility for
hierarchical geometrical and colour edits following Verstraaten and
Kosinka [VK18], whilst guaranteeing interactive rates of perfor-
mance. Further novel features include user interface improvements
and self-intersection prevention.

3. Preliminaries

We now detail some of the main building blocks of our method and
its implementation, and define used terminology.

3.1. Mesh data structure

A mesh M = (V,E,F ) is defined by a set of vertices V , a set of
edges E, and a set of faces F . A vertex v ∈ V generally contains
several attributes, such as coordinates and colour. An edge e ∈ E is
directional and connects unique vertices vi and v j. More formally,
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Figure 2: An illustration of the ternary subdivision operator T .

E ⊆ {(vi, v j ) ∈ V ×V | i �= j}. A face f ∈ F is a minimal closed
loop of edges and vertices where each subsequent pair of vertices
is connected by an edge. In addition, a gradient mesh M̃ built on
top ofM includes a set of gradient vectorsG. At each vertex, a gra-
dient vector is assigned per incident edge. We assume that the mesh
is manifold; see elsewhere [LKSD17, VK18] for more details.

A regular vertex is incident with quadrilateral faces only and has
valency less than 4 if it is a boundary vertex, or valency equal to 4
if it is a non-boundary (internal) vertex. All other vertices are called
extraordinary. A regular face is quadrilateral and is incident with
regular vertices only. Irregular quadrilateral faces are incident with
at least one extraordinary vertex, and faces of valency other than 4
are called extraordinary.

3.2. Ternary subdivision step

Prior to Catmull–Clark subdivision, a ternary subdivision step op-
erator T is applied to M̃ to create the mesh M0 [LKSD17]. This
operator T logically trisects each edge, and creates a smaller polyg-
onal face for each original face, surrounded by a layer of quads; see
Figure 2. This structure is useful as the colour assigned to a vertex
in M̃ is interpolated in the Catmull–Clark limit when the one-ring
neighbourhood of vertices inM0 corresponding to vertices in M̃ is
assigned the same colour.

The geometry ofM0 is obtained from M̃ as follows. For an edge
given by Vi to Vj, its two new edge points Vi j and Vji simulate the
role of gradient handles in the traditional gradient mesh; they are
initialised by Vi j = (2Vi +Vj )/3 and similarly for Vji, and then ad-
justed by the user. Then for each vertex Vi and each of its incident
faces Fj, the two edge-connected neighbours ofVi in Fj, the centroid
of Fj andVi itself are bilinearly interpolated to initialise the new face
points (see Lieng et al. [LKSD17] for details), which can optionally
also be adjusted by the user.

3.3. Subdivision gradient meshes

Arbitrary manifold topology gradient meshes can be defined by a
modified Catmull–Clark subdivision scheme in both geometry and
colour [LKSD17]. This method allows artists to manipulate the
mesh and associated colour gradients at various levels of subdivi-
sion. Additional features such as interpolation of both geometry and
colour, local detail following edits at coarser subdivision levels and
support for sharp colour transitions were added as well.

The subdivision gradient mesh at subdivision level l is obtained
by a single application of the ternary subdivision operator T fol-

Figure 3: Alternatives for expressing the refinement of geometry in
a local frame.

lowed by l applications of the Catmull–Clark subdivision operator
C as

Ml = ClTM̃. (1)

The colour component is simply stored as the colour chosen by
the user. The geometry of the initial mesh M̃ is stored in global
coordinates. Geometry edits at any level of subdivision are stored
using one of the following approaches; see Figure 3. The first ap-
proach, for a vertex V edited towards a sector that corresponds to
a face, stores an edited vertex Ṽ as a displacement �V from the
original vertex V . This displacement is locally expressed using the
vectors e1 and e2 along the edges of the quadrant in which Ṽ is lo-
cated as �V = ae1 + be2 for some a and b, which are then stored.

The second approach, for vertices V edited beyond the mesh
boundary, stores the displacement �V as a relative angle and length
with respect to the vectors e1 and e2 as

(φ̂, ρ̂ ) =
(
φ/α, ‖�V‖2/

√
‖e1‖2‖e2‖2

)
. (2)

Geometry edits at any level of subdivision are stored using these
two approaches for boundary and non-boundary vertices as in Ver-
straaten and Kosinka [VK18], Section 4.2].

The meshesClTM̃ and TClM̃ are topologically equivalent, and
therefore a natural mapping between the vertices of ClM̃ and Ml

exists. As colour edits should only affect disjoint one-ring neigh-
bourhoods, the user is allowed to edit the colour of all vertices (or
vertex sectors when using sharp colour transitions) in Ml that are
topologically associated to ClM̃.

Conventional gradient handles for a subdivision gradient mesh
allow geometry edits of a subset of the vertices in Ml only. This
unnecessarily limits the expressive freedom of the user, and there-
fore we allow the user to edit the geometry of all vertices in Ml .

3.4. Feature adaptive subdivision

Our method is inspired by a computationally efficient method to
evaluate the Catmull–Clark limit surface including boundaries up to
machine precision [NLMD12], which adopts the idea of FAS. The
mesh is iteratively subdivided only in the affected vicinity of irreg-
ular features, while the regular patches are always directly rendered
as bicubic patches. Special transition patches are required to avoid
cracks between adjacent patches of different subdivision levels. The
FAS can be summarised as three stages [SRK*15].
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Figure 4: Five possible constellations for transition patches
[NLMD12]. Patches belonging to the current subdivision level, next
subdivision level and transition patches are coloured in green, red
and yellow, respectively.

CPU preprocessing aims to produce the mesh connectivity and
identify features to apply adaptive subdivision to. The input to FAS
is a base control mesh, which is composed of vertices, faces and
optional data containing hierarchical details and semi-sharp crease
edge tags. This preprocessing yields the patches to be tessellated and
the computation of the relevant control points, which are stored in
index buffers. For each level of subdivision, a subdivision table is set
to store all the mesh data required for the FAS process. Index buffers
store patch data, which describe the patch type and the indices of
all the relevant control points. The base control mesh, patch index
buffers and generated subdivision tables are then sent to the GPU
for further processing.

Regular patches at each subdivision level are categorised as either
a full patch that only shares edges with patches of the same subdi-
vision level, or a transition patch that is adjacent to a patch that is
further subdivided. Crack-free renderings can be obtained by evalu-
ating adjacent patches at corresponding domain locations. One ap-
proach that ensures this splits each transition patch into several sub-
patches using a simple case analysis. There are five possible constel-
lations for transition patches [NLMD12], Section 4]; see Figure 4.

During FAS, the base mesh is subdivided iteratively by running
a number of GPU kernels. At each level, the control points and the
subdivision tables of current level are used for the computation of
the control points at next subdivision level. These control point data
are stored in a control point buffer, which is generated at the prepro-
cessing stage. This process repeats for each subdivision level until
it reaches the pre-defined maximum level.

Finally, the patch tessellation stage sends the patches to the GPU
tessellator unit using three patch types: regular, transition and irreg-
ular. The tessellator tessellates all the patches into triangles, which
are then rasterised.

FAS subdivision depth depends on the given tessellation factor t.
It performs �log2 t� subdivision steps. For each subdivision level l,
its factor is set to t̃ = max(1, t/2l ). When t̃ = 1, the patch is evalu-
ated only at its corners using limit stencils of Catmull–Clark subdi-
vision.

4. Feature-Adaptive and Hierarchical Subdivision Gradient
Meshes

This section presents our novel method, which adapts the idea of
FAS and approximate patches to the setting of subdivision gradient
meshes. Our algorithm takes a coarse base control mesh data with
gradient vectors (Section 3.1), including edges explicitly tagged as
being sharp for sharp colour transitions, and hierarchical editing

Figure 5: A tulip model. Far left: Amesh at level 0 (after the ternary
subdivision step). Left: Edited mesh at level 3 using global refine-
ment leads to 5472 patches. Right: In contrast, using our feature-
adaptive and hierarchical method, the mesh at level 3 requires only
699 patches. Far right: The rendered result (using our method).

data. The output is an adaptively refined mesh. The mesh refine-
ment algorithm stops when there are no more faces requiring fur-
ther subdivision. Afterwards, the faces of the refined mesh are sent
to the GPU to be rendered using bicubic Bézier patches or Gre-
gory patches.

4.1. Approximate feature adaptive rendering

We developed an OpenGL/Qt-based experimental tool ourselves in-
stead of using FAS in OpenSubdiv due to several reasons. Although
our method is inspired by FAS, it is different from FAS in the strat-
egy for terminating the subdivision. Furthermore, FAS in Open-
Subdiv does not directly support some of the features needed in
our context. Finally, our own implementation gives us full control
over hierarchical editing, local updates, sharp transitions and self-
intersection prevention.

The surface M∞ obtained after an infinite number of Catmull–
Clark subdivision steps is called the limit surface. This surface is
almost everywhere C2 continuous [Hav02], and over regular re-
gions equivalent to C2 tensor product bicubic B-splines [DS78,
LSNC09]. Boundary loops converge to uniform cubic B-spline
curves [DKT98]. Irregular regions containing extraordinary vertices
are composed of an infinite set of polynomial patches, and therefore
expensive to evaluate.

Similar to FAS, at each level, we determine which faces to further
subdivide. Faces that do not require further subdivision are rendered
using bicubic Bézier patches or Gregory patches at their terminating
subdivision level. Other faces are subdivided further. This choice
optimises performance while obtaining the best visual quality. See
the example in Figure 5: The mesh generated by our method is less
dense than by traditionally globally subdividing the whole mesh to
the highest used subdivision level.

The memory requirements for global subdivision to level k are
proportional to 4k|F|, where |F| is the number of faces in the con-
trol mesh, and can therefore be computationally prohibitive. In our
method, the memory used is proportional to the number of patches,
which can be at different subdivision levels. This greatly reduces the
computations and memory required; see Section 6.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Figure 6: Meshes resulting from feature adaptive rendering, after
either a geometry edit (left) or magenta colour edit (right) of the
top-left vertex in M1. Geometry edits affect their two-ring neigh-
bourhood, and colour edits affect their three-ring neighbourhood.
Quads are by default tessellated as two triangles. The bottom row
shows the results at a higher level of tessellation.

Our algorithm is also different to FAS in the subdivision termi-
nation condition. FAS keeps subdividing the mesh in the vicinity
of irregular faces at each subdivision level until tessellation of the
newly generated patches only amounts to evaluating the corner po-
sitions. In our algorithm, we introduce the concept of affected faces
to determine at which subdivision level to terminate subdivision, as
explained next.

4.2. Affected faces

A face is labelled as affected when it needs to be further subdivided.
This happens for three reasons, as follows:

Edited faces. At each subdivision level, we determine which faces
are affected by edits corresponding to the same or finer levels.
At a specific subdivision level, a geometry edit indirectly affects
a two-ring neighbourhood of faces around the edited vertex (this
corresponds to the two-ring support of Catmull–Clark subdivision
blending functions). Colour edits directly affect the one-ring
neighbourhood (due to the colour spread step ensuring colour inter-
polation in the limit), and therefore indirectly affect the three-ring
neighbourhood of faces around the edited vertex. Sharp colour edits
produce the same effect, but only in the sector influenced by the edit.

A demonstration for both geometry and colour edits is shown in
Figure 6. Note the reduced face count with respect to what global
subdivisionwould produce. The transition patches, connecting faces
at different subdivision levels as employed in FAS [NLMD12], en-
sure that patch edges are evaluated at identical parametric locations.
The regular topology in this example ensures exact reproduction
of the limit surface, which is simply a finite collection of bicu-
bic patches.

Figure 7: Left: The meshM0 obtained from an input mesh M̃ with
one triangle with a quad next to it, after the initial ternary subdivi-
sion step. Right:M1, i.e.,M0 after one subdivision step. Note that
only faces incident with the vertices of the extraordinary face are
affected and thus subdivided.

Faces affected by finer level edits are further subdivided locally.
Taking a submesh of only the affected area and subdividing it pro-
duces incorrect results. This is due to the introduced boundaries
and the size of Catmull–Clark subdivision stencils. This problem is
solved by padding the affected area with a one-ring neighbourhood
of faces before taking a submesh and subdividing it.

When taking a submesh, we cannot retain the assignment of its
original half-edge indiceswithout a loss in performance. As the edits
are indexed via half-edge indices, we either require an explicit book-
keeping of global mesh indices to submesh indices, or we require
the edits to be mapped to the submesh. Our index mapping strat-
egy, detailed in Appendix A, allows the latter to be accomplished in
constant time.

In the hierarchical setting, a face is considered affected when ei-
ther the face itself is affected by an edit at its subdivision level, or
the face topologically contains (i.e. is an ancestor of) an affected
face of a finer level edit.

Irregular faces. Due to ourmesh structure given byMl = ClTM̃,
newly generated non-quadrilateral faces are only contained in M0.
These non-quadrilateral faces and their one-ring neighbourhoods
are both considered affected (again owing to the Catmull–Clark sub-
division rules applied there). In Figure 7, left, the mesh isM0 with
one irregular face (bottom right), which has six direct neighbours.
Thus, all of the seven faces are considered affected and then subdi-
vided; see Figure 7, right.

Affected face cascading. The used approximating (bicubic and
Gregory) patches tend to create minor artefacts along edges inci-
dent with extraordinary vertices; see Figure 8. FAS of one of these
sectors may create discontinuity artefacts along the edges with faces
at different levels. After obtaining the affected faces, we therefore
iteratively cascade the affected faces around such irregular vertices.
A demonstration of affected face cascading in the vicinity of irreg-
ular vertices is given in Figure 8. There are five sectors around the
extraordinary vertex in the middle. We move the red control point
close to the bottom left, which affects one sector around the ex-
traordinary vertex. This one sector is refined more, while the other
sectors are not refined. To prevent the artefacts, this level mismatch
may cause, we refine all the sectors around the extraordinary vertex
to the same level of subdivision. Then as we can see in Figure 8, far
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Figure 8: Far left: The result of feature adaptive subdivision with-
out irregular face cascading and minimal tessellation; the red con-
trol point close to the bottom left in M2 has been edited. Left:
The resulting transition artefacts around the extraordinary vertex in
the centre, shown via the plasma colour map [HDF*20]. The per-
pixel difference in [0, 1]3 RGB space between our method and the
Catmull–Clark limit surface is magnified 200 times to make it visi-
ble. Right: The mesh with irregular face cascading and an increased
tessellation factor. Far right: Artefacts are greatly reduced by irreg-
ular face cascading.

right, the sharp artefacts along edges incident with the extraordinary
vertex are greatly reduced.

4.3. Patch rendering

We use the ACC2 scheme [LSNC09] to approximately render the
Catmull–Clark limit surface given by the control (gradient) mesh us-
ing hardware tessellation. Our choice optimises performance while
obtaining high visual quality. For each regular face in the mesh,
a bi-cubic geometry/colour patch is constructed. These patches re-
produce the Catmull–Clark limit surface exactly. As these patches
are parametric, they are efficient to evaluate on GPU architectures
with a programmable tessellation unit. For each irregular face in
the mesh, a Gregory patch is constructed. These patches meet with
G1 continuity along edges incident with extraordinary vertices (in
contrast to the C0 continuity that is provided by ACC1 there). This
method improves upon surface quality (Section 6) near extraordi-
nary vertices at the expense of being slightly more computation-
ally expensive compared to ACC1 [LSNC09]. Transition patches
are handled as Niessner et al. [NLMD12], Section 4], see Figure 4.

4.4. Sharp transitions

All vertices along sharp transitions (often specified along chains
of edges) are subdivided using the boundary rules, except its end-
vertices (if any), often called darts, which are subdivided using the
smooth rules [DKT98]. The boundary rules are only applied to the
colour components of the control mesh whereas the geometry is
smoothly subdivided. The approximating patches of ACC1/ACC2
were never intended to support such (colour) transitions. Although
the associated artefacts turn out to be virtually invisible, a slightly
improved approximation is achieved by treating the boundary/sharp
edges adjacent to a dart as a complete boundary when updating its
inner control points in a subdivision step. Figure 9 shows an exam-
ple of sharp colour editing and the tiny artefacts resulting from using
approximate patches to render them.

Figure 9: Left: A colour surface with a sharp colour transition edit.
Middle: A zoomed version of the edited area. Right: Artefacts cor-
responding to dart vertices are visible around the colour edit points
in the top-left and bottom-right corner. The maximum difference in
this example is 0.067% (wrt. the theoretical maximum of

√
3); the

colour map and difference scaling are the same as in Figure 8.

Figure 10: Left: A visualisation of our brush editing functionality.
The brush is indicated by the grey circle. The selected geometry and
colour handles are shown as red bullets. Right: A visualisation of
the region of influence of the currently selected handles: in green
for geometry and in blue for colour.

5. User Interface

Hierarchical editing in the context of gradient meshes was proposed
in Lieng et al. [LKSD17] and further developed in Verstraaten and
Kosinka [VK18]. It is worth noting that OpenSubdiv also supports
hierarchical editing for subdivision meshes [Pix21], but for the rea-
sons mentioned in Section 4.1, we rely on our own implementa-
tion. Improving upon Verstraaten and Kosinka [VK18], we have de-
signed various user interface improvements that allow the artist to
intuitively edit the gradient meshes in a hierarchical manner.

5.1. Editing

Handles. Existing gradient handles for a subdivision gradient
mesh allow geometry edits of a subset of the vertices in Ml only.
This unnecessarily limits the expressive freedom of the user, and
therefore, we allow the user to edit the geometry of all vertices in
Ml . To this end, we require visual cues for vertices that can be
edited in different ways; see Figure 10. Green bullets denote the ver-
tices for which only geometry can be edited. Dark blue bullets define
the vertices via/at which both geometry and colour can be edited. To
facilitate sharp colour edits per sector, we introduce slightly smaller
light blue bullets around the colour handles, which are offset in the
direction of each incident sector. In our implementation, we only
allow the smaller colour handles to be actually colour edited, which
works well with our brushes as explained below.
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J. Zhou et al. / Feature-Adaptive and Hierarchical Subdivision Gradient Meshes 395

The ternary subdivision step introduces an implicit three-ring sep-
aration between colour edit points, which remains the case after fur-
ther Catmull–Clark subdivision. A naive approach is to use themesh
data structure and subdivision functions to explicitly keep track of
these colour edit points. We present a better alternative that directly
extracts the colour handles from a mesh after an arbitrary number
of subdivision steps. We exploit the above-mentioned colour sepa-
ration and the fact that existing vertices retain their indices during
subdivision. We perform a depth-first search that is initiated with
the indices of the vertices ofM0, to account for potentially discon-
nected components. Only steps of three consecutive (half)edges in
a single direction along the edges incident with the vertices are al-
lowed. As a result, the points visited by the algorithm indicate the
colour handles.

Brushes. As an alternative to individual editing at handles by di-
rect selection, we introduce a more advanced brush; see Figure 10,
left. All handles within a specified radius (adjustable by the user)
from the cursor are automatically selected. A colour (that can be set
interactively for the brush) is assigned to all brushed/selected colour
handles while editing. Geometry edits are applied to the geometry
handle closest to the cursor in the centre of the brush.

Region of influence. To provide the artist with an indication of the
potentially edited region, we outline the region that would be in-
fluenced by editing the currently selected geometry (in green) and
colour handles (in blue), as shown in Figure 10, right. All currently
brushed colour handles and the closest geometry handle contribute
to this affected area. As intended, sharp colour edits affect only spe-
cific sectors.

5.2. Interpolation and self-intersection prevention

A conventional user interface allows the user to directly edit handles
at specific subdivision levels [LKSD17]. However, this approach af-
fects the resulting limit surface in a counter-intuitive way, which is
unlikely to fulfil the intentions of the artist. The reason is that, in
general, control points are not interpolated in Catmull–Clark subdi-
vision, and naive attempts to force interpolation lead to a global sys-
tem of linear equations. However, as already utilised in Verstraaten
and Kosinka [VK18], the initial ternary step allows for separation
of these equations, which can then in turn be solved completely lo-
cally. Our improved user interface allows the user to directly edit the
corresponding limit positions of the control points. Owing to unfor-
tunate mistakes in the limit stencil inversion process in Verstraaten
and Kosinka [VK18], we derive the correct formulas in Appendix B.

This (desirable) interpolation property and/or careless geometry
editing may lead to self-intersections (fold-overs) in the limit sur-
face, thereby compromising the validity of the intended design. We
prevent self-intersections by employing the sufficient injectivity test
of Gain and Dodgson [GD01], applied to bicubic patches in the
mesh. A demonstration of the self-intersection prevention feature
is presented in Figure 11. Although this feature works well, slight
overlaps may occur at extraordinary vertices where ACC2 (Gre-
gory) patches are rendered, as these are approximated by ACC1
(bicubic) patches for the injectivity tests.

Figure 11: A demonstration of the self-intersection prevention fea-
ture at tessellation level 10. A geometry handle is dragged in one di-
rection as far as allowed by the method. For the quadrilateral model
(left), the faces are just not overlapping at this point. For the trian-
gular model (right), a very slight overlap might occur due to the
ACC2 surface approximation. The bottom row shows insets.

6. Results

We have designed several models using our subdivision gradient
mesh, presented throughout the paper and the supplementary video.
Some of them are simple and academic in nature to reveal the work-
ings and features of our representation, and some are realistic ex-
amples to showcase the capabilities of our method. To evaluate the
quality of our method, we compare our results to the correspond-
ing Catmull–Clark limit surface both visually and statistically. The
pixel-level differences are computed in the unit RGB cube, scaled
up by 200 for visualisation purposes, and shown using the plasma
colour map, as in Figure 8.When reporting the maximum difference
as a percentage, it is with respect to the theoretical maximum of

√
3.

The cherry model presented in Figure 1 showcases the main fea-
tures of our method: hierarchical editing. The stalk can be bent by
moving only a few control points and a detail (water drop) can be
easily addedwithout having to refine themodel globally. Alongwith
the tulip model in Figure 5, it also shows the significantly reduced
face count our method offers compared to previous techniques that
rely on global subdivision. Further examples include the leek in Fig-
ure 12, the bowling pin in Figure 13, the beach ball in Figure 14, the
butterfly in Figure 15 and the sunglasses in Figure 16.

Table 1 shows the generated face counts for the different mod-
els featured throughout this paper. Although this gives a good in-
dication of the expected performance of our method, it is not only
dependent on the number of faces. We make a distinction between
bicubic and Gregory patches, and also list the number of transition
patches (in brackets). To compare our method with previous meth-
ods [LKSD17, VK18], we also list the number of faces these global
methods would require to represent the same models.
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Figure 12: An example of our method used to model a leek. Top left:
A mesh of level 0 (after the initial ternary step). Top right: The mesh
after 2 levels of hierarchical editing. Bottom: The final rendering of
the leek model.

Figure 13: A bowling pin model. Left:M0 after a ternary subdivi-
sion step on the initial mesh M̃. Middle: The edited result up to level
3. Right: A visual representation of the colour difference between
our method and the Catmull–Clark limit surface; the maximum is
0.31%.

We show simple triangular, quadrilateral and pentagonal meshes
in Figure 18. On purpose, to demonstrate how our method smoothly
blends colours, we assigned very distinctive colours to the colour
handles (such as red, green, blue, cyan, magenta and yellow).

Sharp colour transitions and dart vertices were discussed in Sec-
tion 4.4 and demonstrated in Figure 9. In cases where multiple sharp
transitions meet, the difference with respect to the Catmull–Clark
limit surface may become a bit larger, as shown in Figure 19. How-
ever, as these occur in very specific cases only, the difference is
still relatively small, and the resulting colour surface is still smooth
around the sharp transitions, we do not consider these problematic.

Performance. We list performance statistics in Figure 20 on two
models: a simple hexagon model with no edits, and the complex
and hierarchically edited cherry model of Figure 1. We compare

Figure 14: A beach ball model. Left: M0 after a ternary subdivi-
sion on the initial mesh M̃. Middle: The edited result up to level 3.
Right: Difference visualisation with the maximum of 0.53%.

Figure 15: A butterfly model. Top left:M0 after a ternary subdivi-
sion on the initial mesh M̃. Top right: The edited result up to level
5. Bottom left: The mesh using our method. Bottom right: The mesh
of global subdivision.

Table 1: Generated patch counts for our models, broken down by the type
of rendered patches. The numbers in brackets report the counts of transi-
tion patches. The last column gives the number of patches needed in case
global/uniform subdivision is used.

Model Bicubic Gregory Total Global

Cherry (Figure 1) 1322 (248) 49 (4) 1371 78336
Tulip (Figure 5) 642 (79) 57 (4) 699 5472
Leek (Figure 12) 930 (74) 21 (4) 951 2160
Beach ball (Figure 14) 312 (40) 24 (0) 336 6048
Bowling pin (Figure 13) 2085 (242) 0 (0) 2085 4032
Butterfly (Figure 15) 3708 (458) 33 (0) 3741 94464
Sunglasses (Figure 16) 1539 (199) 69 (6) 1608 11088
Pear (Figure 17) 3467 (827) 43 (1) 3510 313344

our method to existing approaches, both of which use global sub-
division [LKSD17, VK18] for evaluation and rendering. The aver-
age timings include both rendering and CPU time calculations (of
patches and their control points in case of ourmethod), and are given
in milliseconds. The listed measurements exclude our injectivity
testing. When enabled, the injectivity test on the cherry model at
subdivision level 5 takes approximately 7 ms. The reported mea-
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Figure 16: A sunglasses model. Top left: The edited result up to
level 3 using global subdivision. Top right: The edited result up to
level 3 using ourmethod. Bottom left: The zoomed detail of the result
using global subdivision. Bottom right: The zoomed detail of the
result using our method.

Figure 17: A pear model. Top left: The final mesh up to level 6 us-
ing global subdivision. Top right: The final mesh using our method.
Bottom left: The edited result up to level 6 using our method. Bottom
right: The zoomed detail of the result using our method.

surements were taken on a machine with an NVIDIA TITAN V
GPU, 64 GB of RAM and an Intel XEON E5-2630 CPU.

Further performance statistics, showing both geometry and
colour editing on the butterfly model (Figure 15) and the pear model
(Figure 17) are shown in Figure 21. The figure shows that our al-
gorithm’s advantage increases with the subdivision levels used for

Figure 18: From left to right are the control meshes and colour
surfaces corresponding to a triangular, quadrilateral and pentago-
nal input mesh M̃, respectively. The top two rows present the limit
projections of the control meshes M0 and M1, respectively. The
bottom row presents the colour surfaces, including theM0 handles
for visual guidance.

Figure 19: Our result in the vicinity of multiple sharp colour ed-
its. The magenta and yellow sharp colour edits create boundaries
within the colour component of the surface that meet in the cen-
tre, creating an irregular vertex there. The maximum difference is
1.50%.

adding details (such as those in the pear model near its dividing line;
see Figure 17, bottom right).

7. Discussion

The design of our method mainly focused on reducing the needed
face count and number of generated control points to achieve
real-time performance, while preserving high visual quality. The
achieved visual quality, which takes Catmull–Clark limit surfaces
as ground truth, can be further improved at the expense of more
rendered faces by marking all irregular faces as affected up to some
desired level. In our experience and based on the examples presented
throughout the paper, this is not required.

The triangular version [LS08] and the multisided version of
ACC2 [HK18] are useful to fill the holes in the M0 meshes, but
after a single subdivision step, no multisided holes remain, and thus
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Figure 20: Average frame time (in milliseconds) comparison be-
tween global subdivision and our method. The first six measure-
ments correspond to a simple hexagon, for which the number of gen-
erated triangles is exactly the same for both methods. The last two
measurements correspond to the cherry model of Figure 1(f) with
approximately the same number of triangles (we set the tessellation
levels in our method so that the numbers of generated triangles just
exceed those for global subdivision at levels 5 and 6).

Figure 21: Average frame time (in milliseconds) comparison be-
tween global subdivision (blue) and our method (red) on the butter-
flymodel (left; subdivision level 5, more than 188k triangles) and the
pear model (right; subdivision level 6, more than 626k triangles).
Both geometry and colour editing timings are shown.

these patches have limited usage in our setting. As they are also
more computationally intensive, we have decided not to use them.

A comparison between bicubic and Gregory patches at extraor-
dinary vertices is shown in Figure 22. While it may be the case that
bicubic patches constructed by ACC1 provide a better Catmull–
Clark limit surface approximation at vertices of valency 3, Gre-
gory patches (of ACC2) provide better approximation at valencies 5
and higher. But more importantly, as discussed in Section 4.3, Gre-
gory patches provide smoother colour surfaces with real-time per-
formance, which justifies our choice to use them for all extraordi-
nary vertex valencies.

The user interface shortcuts we introduced in our implementation
and the brush editing functionality have allowed for a significantly
quicker design process as whole swathes of control points can be
edited at once. The visualisation of the affected area, explicit sector
colour edit points and brushing improve user experience.

Figure 22: A visual comparison between bicubic (top row) and
Gregory patches (bottom row) at extraordinary vertices. The meshes
come from Figure 18. The values below the difference images wrt.
the Catmull–Clark limit surfaces report the maximum differences as
percentages of

√
3.

7.1. Limitations

One inconvenience of our method is creating the initial mesh of a
model, which is also a necessary step in creating gradient meshes
with other tools, such as Adobe Illustrator. The difference is that
our approach allows for arbitrary manifold mesh connectivity, not
restricted to regular rectangular arrays. This might be initially seen
as a disadvantage, in that users may need to adjust their approach to
(subdivision) gradient mesh design. At the same time, our approach
opens the door for flexible (and locally adaptive) gradient mesh de-
signs and more importantly image vectorisation techniques, poten-
tially using only a single mesh.

As is the case with most, if not all, patch-based approaches, ours
too may lead to incorrect geometries when the input mesh faces are
not convex. One solution is to split such faces into convex ones; this
is perfectly fine in our method since it supports arbitrary manifold
topologies. Furthermore, our automatic fold-over detection system,
when enabled, does not allow the user to create such meshes.

7.2. Future work

Concerning performance, the following topics require further at-
tention. Our implementation recomputes the meshes and fully up-
dates the graphics buffers after each edit, whereas a better alterna-
tive would update these structures only locally. The shaders could
be optimised using for example table-driven approaches or the re-
cent half-edge approach of Dupuy and Vanhoey [DV21]. Computa-
tionally demanding functionality like subdivision may significantly
benefit from multicore processing. As these optimisations tend to
significantly affect code complexity and maintainability, we have
chosen to leave this as future work.

For geometry edits, a bulk editing feature may be convenient and
is theoretically possible [GD01]. One would have to solve a local
system of equations such that the limit projections of the vertices in
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the original mesh are the desired vertices in the limit mesh. One po-
tential drawback of such approaches is that the original mesh could
be deformed quite severely in order to conform to the constraints.

Our work can be used to address the image vectorisation problem
since our meshes exhibit a lot of (topological) flexibility, similar to
that of meshes based on curved triangles [HEK21]. It would be a
breakthrough if we could generate (feature-adaptive and hierarchi-
cal) subdivision gradient meshes automatically from raster images.

8. Conclusion

We have developed feature-adaptive and hierarchical subdivision
gradient meshes, which support interactive editing and real-time
rendering using hardware tessellation. Our method drastically re-
duces face counts while offering a nearly indistinguishable approx-
imation with respect to global subdivision.

As a faster alternative for global subdivision, we implemented
and adapted the ACC1 and ACC2 methods for the setting of
subdivision gradient meshes, and borrowed ideas from FAS. A key
aspect here was the design of a convenient and consistent index
mapping between subdivision levels, allowing edits to be mapped
to submeshes, which are subdivided only locally using our concept
of affected faces.

In order to make sure that the colour surface is always valid,
we have integrated a real-time self-intersection prevention mech-
anism to the geometry editing process. The improved user inter-
face allows the designer to edit groups of control points at once
and gives useful feedback of the effects of editing at different
subdivision levels. All combined, our subdivision gradient meshes
provide a significantly improved user experience over existing
methods.
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Appendix A: Index Mapping

In the setting of hierarchical edits and feature adaptive rendering,
we require a convenient and consistent mapping between associ-
ated vertices, edges and faces across different subdivision levels.
A convenient implicit mapping is obtained by a specific imple-
mentation of the Catmull–Clark subdivision step. Our mapping
requires boundary halfedges in the input mesh to have indices that
are greater than those of all interior halfedges. This requirement
applies to the implementation of the initial ternary subdivision
step and any subsequent (binary) Catmull–Clark subdivision
steps.

We associate each interior halfedge e before subdivision to the
face f1 after subdivision; see Figure A.1. A consistent way of index-
ing the faces after subdivision is then given by I( f1) = I(e), where I

Figure A.1: A schematic for consistent index mapping in Catmull–
Clark subdivision. Not all halfedges are included to limit clutter.

returns the index. We associate each interior halfedge e before sub-
division to the halfedges e0, e1, e2 and e3 after subdivision. A consis-
tent way of indexing the interior halfedges after subdivision is then
given by I(ei) = 4I(e) + i.

We associate each boundary halfedge e before subdivision to the
halfedges e0 and e1 after subdivision. Let ne be the number of inte-
rior halfedges before subdivision (which is equal to the sum of face
valencies). A consistent way of indexing the boundary halfedges af-
ter subdivision is then given by I(ei) = 2ne + 2I(e) + i.

Vertex indexing is split according to the different types of gener-
ated vertices. A vertex vi takes the index of v of the previous subdivi-
sion level. An edgepoint v j that splits an edge [e, etwin] gets assigned
I(v j ) = nv + min(I(e), I(etwin) where nv is the number of vertices of
the previous subdivision level. Finally face points vk that split a face
f are assigned the index nv + ne

2 + I( f ).

The introduced mapping strategies are convenient for the follow-
ing reasons. The index of an interior parent halfedge e can now be
obtained from the indices of the child halfedges e0, e1, e2 or e3 using
integer division by 4. This allows for obtaining the affected faces at
any level caused by finer level edits.

Further, the index in of a halfedge at subdivision level n can be
expressed via the index im of a halfedge at level m < n using hier-
archically defined detail 0 ≤ d < 4 as

in = 4(. . . (4(4(4im + dm+1) + dm+2) + dm+3) . . .) + dn,

where a detail dk indicates which child edge was chosen at subdi-
vision level k: d = 0 for e1, d = 1 for e2 etc. The details d can be
extracted from in in reverse order as they are the remainders after
repeated division of in by 4, e.g. dn−1 = �dn/4. These observations
allow the following. Mapping edits towards a submesh (while pre-
serving hierarchically defined detail) is allowed as halfedge indices
im can be swapped. Besides this, edits can be mapped towards a sub-
dividedmesh as 4im + dm+1 can be substituted by im+1. Furthermore,
the affected area at a finer level can be mapped towards affected ar-
eas at coarser levels using repeated integer division by 4.

Appendix B: Inverse Limit Projection

Our user interface allows direct editing of vertices of the limit
meshes. The geometry edits, however, are stored with respect to ver-
tices of the control meshes. We therefore needed to invert the limit
stencil/projection [LSNC09], Section 3.2]
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Figure B.1: A schematic for a vertex v of valency n [LSNC09].
Edge midpoints are denoted by mi and face centroids are denoted
by ci.

v∞ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n− 3

n+ 5
v + 4

n(n+ 5)

n∑
i=1

(mi + ci) if v is a smooth vertex of valency n;
v j + 4v + vk

6
if v is a crease/boundary vertex with sharp edges v jv and vvk;

v if v is a sharp/corner vertex

(B.1)

of Catmull–Cark subdivision; see Fig. B.1.

The inverse limit projection of a sharp/corner vertex is simply v =
v∞, and that of a crease/boundary vertex reads v = 6v∞−v j−vk

4 . For
smooth vertices, this is less trivial as the edge midpointsmi and face
centroids ci depend themselves on v. The inverse limit projection of
a smooth vertex v is then given by

v =
v∞ − 4

n(n+5)

∑n
i=1 (m̃i + c̃i)

n−3
n+5 + 4

n(n+5)

(
n
2 + ∑n

i=1
1
ni

) , (B.2)

where m̃i = mi − v/2 and c̃i = ci − v/ni with ni is the correspond-
ing face valency.
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