2 research outputs found

    Locally-adaptive Myriad Filtration of One-dimensional Complex Signal

    Get PDF
    Locally-adaptive algorithms of myriad filtering are proposed with adaptation of a sample myriad linearity parameter K, depending upon local estimates of a signal, and with “hard” switching of sliding window length settings and a coefficient which influences on the parameter K. Statistical estimates of the filters quality are obtained using a criterion of a minimum mean-square error for a model of one-dimensional complex signal that includes different elementary segments under conditions of additive Gaussian noise with zero mean and different variances and possible spikes presence. Improvement of integral and local performance indicators is shown in comparison to the highly effective non-linear locally-adaptive algorithms for the considered test signal. Having a complex signal of high efficiency, one of the proposed algorithms provides nearly optimal noise suppression at the segments of linear change of a signal; other algorithm provides higher quality of step edge preservation and the best noise suppression on a const signal. Better efficiency in cases of low and high noise levels is achieved by preliminary noise level estimation through comparison of locally-adaptive parameter and thresholds. It is shown that, in order to ensure better spikes removal, it is expedient to pre-process the signal by robust myriad filter with small window length. The considered adaptive nonlinear filters have possibility to be implemented in a real time mode

    Autonomic and central nervous system correlates of cognitive control training for attentional disorders

    Get PDF
    Deficits in cognitive control and attentional processing are commonly observed in people with Attention-Deficit/Hyperactivity Disorder (ADHD) and Specific Learning Difficulties (SpLDs) such as Dyslexia. Poorer performance in the pro/antisaccade task have been observed in these individuals, which suggests impaired visual attention and inhibitory control mechanisms. Atypical cognitive processing is also related to a state of autonomic hypoarousal in conditions such as ADHD. In this thesis, I examined whether the computer-based gaze-control RECOGNeyes training program using the pro/antisaccade task could improve cognitive control of visual attention by targeting the visual attention network and whether such improvements correlate with increased arousal. A group of 35 volunteers with SpLDs and/or ADHD completed the pro/antisaccade task before and after two weeks of training their visual attention using RECOGNeyes. Magnetoencephalography (MEG), pupillometry and electrocardiography were recorded, while they performed the pro/antisaccade task. Our task performance measures, reaction time (RT) and accuracy, and reading indices improved after RECOGNeyes training. Our findings demonstrate for the first time that autonomic measures of sympathetic pupil dilation and parasympathetic cardiac deceleration both correlate with faster saccadic RTs together (which was stronger for antisaccade trials than prosaccade trials) and account for separate variance in RT. Additionally, distinct MEG oscillatory profiles were uncovered in different frequency bands within regions of the visual attention network during the pro/antisaccade task. Slow-wave oscillations of delta and theta bands show anteriorising effects, suggested to mediate timing responses and bottom-up communication from the posterior to anterior network regions. Alpha-oscillations are proposed to have top-down preparatory inhibitory effects, particularly from the bilateral frontal eye field, and alpha-suppression in the right parietal eye field. Beta amplitude presents an additional “anticipatory” event-related desynchronisation (ERD) prior to target onset that is stronger on day 2 and antisaccade trials, which could relate to generalised inhibitory control mechanisms. This thesis supports the existence of complex central and autonomic processes underlying attention and arousal that are not yet fully understood and warrant further investigation. By increasing our understanding of the integrated attentional processes and inhibitory control, this could help the development of targeted treatment solutions, such as RECOGNeyes, for ADHD and SpLDs, to improve outcomes in these individuals
    corecore