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Abstract: Locally-adaptive algorithms of myriad filtering are proposed with adaptation of a 

sample myriad linearity parameter K, depending upon local estimates of a signal, and with 

“hard” switching of sliding window length settings and a coefficient which influences on the 

parameter K. Statistical estimates of the filters quality are obtained using a criterion of a 

minimum mean-square error for a model of one-dimensional complex signal that includes 

different elementary segments under conditions of additive Gaussian noise with zero mean 

and different variances and possible spikes presence. Improvement of integral and local 

performance indicators is shown in comparison to the highly effective non-linear  

locally-adaptive algorithms for the considered test signal. Having a complex signal of high 

efficiency, one of the proposed algorithms provides nearly optimal noise suppression at the 

segments of linear change of a signal; other algorithm provides higher quality of step edge 

preservation and the best noise suppression on a const signal. Better efficiency in cases of 

low and high noise levels is achieved by preliminary noise level estimation through 

comparison of locally-adaptive parameter and thresholds. It is shown that, in order to 

ensure better spikes removal, it is expedient to pre-process the signal by robust myriad filter 

with small window length. The considered adaptive nonlinear filters have possibility to be 

implemented in a real time mode. 

 

Keywords: Locally-adaptive myriad filtering, One-dimensional complex signals,  

Minimum mean square error criterion, Statistical estimates of filter efficiency. 

 

Introduction 
In many practical situations enhancement of digital signal processing quality is more desirable 

in complex conditions of noise variance increasing and presence of mixed additive and 

impulse noises. There are many signals, biomedical, in particular, with different and a priori 

unknown behavior of an information component. To provide high effectiveness of filtration 

for such signals in complex noisy conditions and stable operation of processing algorithm 

when the signal changing is unknown, it is necessary to use adaptive filters. If the information 

process contains step edges and other discontinuous transitions and possible spikes at various 
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points of digital signal sequence, the use of adaptive nonlinear robust processing algorithms, 

in particular, locally-adaptive nonlinear filters is reasonable. 

 

Locally-adaptive nonlinear stable (robust) filters are designed for the necessary balance in 

contradictory requirements to algorithms of filtration which are to ensure a high degree of 

noise suppression, to remove impulsive spikes and to minimize the dynamic errors introduced 

by filtration [4, 17, 18]. Most nonlinear filters, as well as the linear ones, are model-oriented, 

i.e. they are optimal or highly efficient for certain models of signals and known probability 

density functions (PDF) of noise [4, 22]. For a nonlinear filter of high nonlinearity, 

 the dynamic properties are usually high: it preserves step edges, piecewise functions, etc. and 

removes spikes. Nonlinear filter of low nonlinearity better suppresses noise on signal 

segments approximated by linear and polynomial functions and introduces small errors while 

processing polynomial curves [4]. Adaptive use of the advantages of nonlinear filters 

depending on the type of processing signal is important for filtering processes which have 

different elementary segments. To handle such processes, particularly in electrocardiograms, 

adaptive approximating filters are applied that change the processing algorithm parameters 

depending on the high-frequency or low-frequency nature of the signal [5, 6, 8-12]. However, 

as most linear filters, they are not suitable for processing abrupt changes in the signal like step 

edge and other discontinuities and incapable to remove spikes [4, 22].  

 

The basic idea of locally-adaptive non-linear filtering is to estimate the local signal-to-noise 

situation by so-called “local activity indicators” (LAI) calculated for the i-th position of a 

sliding window and to process the vicinity of the current i-th input signal sample with a more 

suitable filter. There are nonlinear locally-adaptive filters with “soft” and “hard” switching of 

parameters. Adaptive filters with “soft” switching are filters which adaptable parameters can 

take any possible values. In such algorithms, LAIs are usually a part of an analytic expression 

describing the output signal. Adaptive filters with “hard” switching are adaptive nonlinear 

filters which parameters take fixed values: for example, change of the window length, type 

and parameters of the nonlinear filter for local signal processing [17, 18].  

 

For the design of locally-adaptive myriad filters (LAMFs), it is a good reason to use “soft” 

and “hard” switching simultaneously [23-26, 28-30]. For “soft” switching, an adaptive 

formula for a signal-dependent change of a sample myriad linearity parameter  

K [3, 14, 20, 23] is proposed. For “hard” switching, sliding window length and the tuning 

coefficient influencing on K are chosen from number of relevant values. The choice is based 

on the current LAI estimates of local signal-to-noise situation 

 

Thus, locally-adaptive myriad filtering makes it possible to achieve a high degree of Gaussian 

noise suppression by adjusting the parameter K to a linear mode and by increasing the 

window length. Minimum errors while processing abrupt changes of the signal are achieved 

by setting the high nonlinearity properties of the myriad filter because it has small values of  

K and window length. Due to LAIs which determine the local signal-to-noise situation for 

adjusting the filter type and its parameters [17, 18, 23], it is possible to obtain a stable 

operation of the processing algorithm for different and a priori unknown signal behavior and 

non-stationary noise variance that is important for many practical applications. Parallel 

calculations allow implementation of the adaptive myriad filtering in a real-time mode.  

 

The goal of the current study is to investigate the locally-adaptive myriad filtration on 

 one-dimensional complex test signal which includes different elementary segments standard 

for a variety of practical situations under different noisy conditions. Comparison between the 
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different LAMFs, applied on the simulated test signals could help the choice of more relevant 

adaptive filtering algorithm.   

 

Methods 

Locally-adaptive myriad filters 
A sample myriad is an optimal M-estimate of location of the Cauchy PDF [7, 13-16], which is 

defined as: 

2 2

1 2 1

ˆ ˆ { ,  ,..., , ;  } arg min log [ ( - ) ]
N

i N ii
myriad x x x x K K x 


   , (1) 

where xi is the data sample within the sliding window; N is sliding window length;  

K is a linearity parameter of a myriad estimator, K > 0. 

 

The parameter K controls the performance of the myriad filter. Small values of K set high 

nonlinear performance of the myriad filter at which it has high dynamic and robust properties 

(can successfully preserve abrupt changes in a signal and remove impulsive spikes) and for 

large K, myriad filtration tends to linear averaging [2, 7, 13, 14, 16, 19]. 

 

Three LAMFs are proposed in this work. LAIs are calculated and compared with the given 

thresholds for each i-th position of the sliding window, where i is index of central element in 

the window. As a result, one of the adaptive myriad filters (AMF) with parameters more 

suitable for processing the vicinity of i-th current sample is switched. 

 

The output signal of the AMF can be described as follows: 

1 2{ , , ..., ,..., , }AMF

i i N aiy myriad x x x x K , (2) 

where 
aiK  is the adaptable linearity parameter K calculated for the i-th sliding window. 

 

The adaptation of the linearity parameter 
aiK  of AMF is carried out by the formulas: 

ai iK bK  or 
f

ai iK bK , , 1max | | |Ni k j k j
k j

K x x 


  , (3) 

where b is a fixed coefficient; iK  is local estimate of signal scale; 
f

iK is pre-filtered value of 

iK ; N is sliding window length. 

 

Locally-adaptive myriad filter based on Z-parameters 

One of the LAMFs switches the output signals between three AMF. One AMF has high 

dynamic properties due to high nonlinearity as a result of small values of K and small window 

length. This is a “detail preserving” component of LAMF. The other AMF is “noise 

suppressive” component of LAMF which has properties close to linear filter due to increase 

of parameter K and window length. An intermediate component of LAMF is AMF with 

medium properties. This LAMF uses LAIs referred to as Z-parameters [17, 18], which are 

defined as: 

 
( 1)/2 ( 1)/2

( 1)/2 ( 1)/2
/ | |

N Nf f

i i j i j i j i jj N j N
Z y x y x

 

      
    ,  

( ) ( )

i

p q

Z i iQ Z Z  , ( 1) / 2p q N   , 1p q N   , (4) 
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where f

i jy  , 
i jx 

 are pre-filtered and input samples of a signal for calculation of the  

Z-parameter, respectively; 
iZQ  is quasi-range of a Z-parameter, where 

)(q
iZ , 

)( p
iZ  are  

q-th and p-th order statistics of the sorted set  (1) (2) ( )NZ Z Z   ; N is sliding window 

length of a preliminary filter for calculation of a Z-parameter which is usually used as an 

intermediate component of this locally-adaptive filters [17, 18, 26]. 

 

The output of the considered three-component LAMF denoted as AMZ is defined as: 

3 3

2 2

1 1

( )

1

( )

1 2

( )

2 2

, ;

, ( ) ( );

, ( ) ( );
i

AMF N , b f t

i i

AMF N , bАМZ f t f t

i i i i

AMF N , b f t f t

i i Z

y if Z Z

y y if Z Z Z Z

y if Z Z Q Z

 


   


  

 (5) 

where 
( )j jAMF N ,b

iy , j = 1, …, 3, is output of j-th AMF (Eq. 2) with the given parameters of 

window length Nj and tuning coefficient bj, N3 > N2 > N1, b3 > b2 > b1; 
f

iZ , 
i

f

ZQ  are LAIs pre-

filtered by a median filter; 
1 0.2tZ  , 

2 0.4tZ   are thresholds. 

 

Locally-adaptive myriad filter based on Hampel threshold parameters 

Another proposed LAMF uses adaptive “hard” switching of the outputs between two AMF.  

In one case, AMF with small window length and nonlinear properties due to small coefficient 

b is used. In another case, AMF with large window length and the linear filtering mode set by 

large coefficient b is applied. LAIs used in this LAMF are similar to the threshold parameters 

of Hampel decision based filter [21] which are described by formulas: 

| |i i ir x m  , Mad

i ith t S ,  

1 21.4826 median{| |, | |, , | |}Mad

i i i N iS x m x m x m    , (6) 

where ix , im  are the central element and the sample median (Med) of the input samples 

1{ }N

j jx   within a sliding window with length N; t is a fixed threshold; Mad

iS  is median absolute 

deviation (Mad) that is a local estimate of a signal scale, where 1.4826 is a coefficient used 

for Gaussian PDF [16].  

 

The output of this two-component LAMF denoted as AMH is described as: 

1 1

2 2

( )

( )

, ;

, ,

AMF N , b f f

i i iAMH

i AMF N , b

i

y if r th
y

y else

 
 


 (7) 

where 1 1( , )AMF N b

iy , 2 2( , )AMF N b

iy  are outputs of AMF (Eq. 2) with window lengths N1 < N2 and 

coefficients b1 < b2; 
31 2 imean{ ,... ..., }f

i Nr r , r , r , r , 
41 2 imean{ ... ..., }f

i Nth th , th , ,th , th   

are LAIs ri, thi smoothed by an averaging filter with window lengths N3, N4, respectively.  

 
Locally-adaptive myriad filter based on Hampel threshold parameters  

with noise-dependent parameters set 

The parameters (window lengths and values of coefficient b) of the “detail preserving” and 

“noise suppression” component AMFs for LAMFs AMZ and AMH are pre-set and remain 

unchanged during processing. In this case the appropriate parameters are chosen for the 
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certain noisy conditions. If the noise level changes significantly, it is preferable to use the sets 

of component filters which are automatically switched depending on previously estimated 

noise level. Such adaptive nonlinear filter can use the comparison of the LAI f

ir or f

ith  

(Eq. 6) with given thresholds in order to estimate noise dispersion. The estimation is 

performed at the part of slow signal alteration when f f

i ir th . Flag variables which define the 

cases of low, middle and high noise levels can be used:   

1

1 2

2

" ", " ", " ", ( ) ( ),

" ", " ", " ", ( ) ( ),

" ", " ", " ", ( ) ( );

f f f

i i i

f f f

i i i

f f f

i i i

ln yes mn no hn no if r th r

mn yes ln no hn no if r th r

hn yes ln no mn no if r th r



 



      


      


     

 (8) 

where ln, mn, hn are Boolean variables which correspond to cases of low, middle and high 

noise levels, respectively; 1, 2 are threshold values.  

 

Therefore, the output of the LAMF with noise-dependent parameters set, denoted as AMH, 

can be described as  

11 11

12 12

21 21

22 22

31 31

( )

( )

( )

( )

( )

, ( " ") ( ),

, ( " ") ( );

, ( " ") ( ),

, ( " ") ( );
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i i i
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i i iАМH
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i
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y
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y if hn yes


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

  

   
 

  



32 32( )

( ),

, ( " ") ( );

f f

i i

AMF N , b f f

i i i

r th

y if hn yes r th









  
   

 (9) 

where 11 11( , )AMF N b

iy , 12 12( , )AMF N b

iy  is set of filters applied in case of “low noise”,  

N11 < N12, b11 < b12; 21 21( , )AMF N b

iy , 22 22( , )AMF N b

iy  are component filters applied in case of  

“middle noise”, N21 < N22, b21 < b22; 31 31( , )AMF N b

iy , 32 32( , )AMF N b

iy  are filters applied in case of 

“high noise”, N31 < N32, b31 < b32. 

 

Signal model. Criteria of effectiveness 
The signal model of one-dimensional sampled data sequence can be described as: 

, with probability 1 ,

, with probability ;

i ai sp

i

i ai spi sp

s n P
x

s n n P

 
 

 

 (10) 

where si is true signal value of the i-th sample; 
ain  is zero mean Gaussian additive noise with 

the variance а
2; 

spin  >> 3а
2 is amplitude of spikes which occur with probability

spP . 

 

The one-dimensional complex test signal (Fig. 1) consists of different elementary segments 

such as a constant level (x-axis indices from 10 to 40), a step edge (x-axis indices 40-60), 

piecewise linear segments (x-axis indices 90-110, 190-210), linearly increasing and 

decreasing parts (x-axis indices 110-140, 160-190), a peak-like maximum (x-axis indices  

140-160), a piecewise function consisting of a constant level and a polynomial curve  

(x-axis indices 240-260), a parabolic maximum (x-axis indices 265-285).  
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The motivations behind the complex model of one-dimensional test signal (Fig. 1) are that it 

has to contain: 

 Segments that can be met in practice and preservation of which is important in 

processing of denoised signal. In this sense, step edge, piecewise linear segments, both 

types of extrema and other points of discontinues are important. 

 Constant value segments that allow characterizing maximal noise suppression 

efficiency. 

 Signal increasing-decreasing segments that allow analyzing noise reduction depending 

upon derivative. Besides, the used test signal provides an opportunity to detect filter’s 

shortcomings, i.e. types of segments for which a given filter performs poorly. 

 

 
 

Fig. 1 A complex model of a one-dimensional test signal 

 

To obtain statistical estimates of filtration efficiency, the criterion of minimum of mean 

square error (MSE) [4] is used and calculated as 

 2

1 2 1

2

2 11
[ ] /[ 1] /

RN i f

i i i i Rj i i
y s i i N   

     , (11) 

where f

iy  is output of the evaluated filter; is  is true signal value of the i-th sample;  

i1, i2 are the indices of samples which define the signal segment for filter efficiency 

evaluation; RN  is number of the input signal realizations for statistical averaging.  

 

Parameter settings for considered algorithms 
Effectiveness of nonlinear robust filters is usually evaluated by numerical simulations since 

analytical description of their properties is too complicated. The numerical simulation 

algorithm consists of generating a test signal, generating and adding noise, filtering, 

calculating and saving filter performance indicators, repeating these steps a predetermined 

number of times, and calculating the average filter quality indicators [4]. 

 

Let us analyze the effectiveness of proposed LAMFs AMZ (Eq. 5) and AMH (Eq. 7),  

AMH (Eq. 9). The parameters of these algorithms are chosen by numerical simulations 

according to criterion of minimum MSE (Eq. 11) for the whole one-dimensional signal for 

medium level of Gaussian noise ( 2

a  = 0.01) for the considered LAMFs (except for LAMF 

AMH which parameters are matched for low, middle and high noise levels).  

 

For LAMF AMZ (Eq. 5), the parameters are as follows: N1 = 7, b1 = 0.3, N2 = 13, b2 = 0.5,  

N3 = 17, b3 = 1. AMF (Eq. 2) with parameters N = 15, b = 1 is used as a preliminary filter for 

calculating Z-parameters (Eq. 4). Because of the noisiness of Z-parameters [17, 18, 26],  

their values are processed by a median filter with window length N = 5.  

 

For LAMF AMH (Eq. 7), the following parameters are selected: N1 = 7, b1 = 0.5, N2 = 17,  

b2 = 1, t = 0.6, for Medi and Madi estimates the preliminary window with length N = 17  
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is used, LAIs ri, thi are smoothed by the averaging filters with windows N3 = 21, N4 = 15.  

For this LAMF, the filtering of adaptable parameter 
aiK  (Eq. 3) by AMF (Eq. 2) with 

parameters N = 17, b = 0.5 is used.  

 

For modified LAMF AMH (Eq. 9), the parameters are as follows: N11 = 5, b11 = 0.5;  

N12 = 15, b12 = 1; N21 = 7, b21 = 0.5; N22 = 17, b22 = 1; N31 = 9, b31 = 0.5; N32 = 17, b32 = 1;  

the adaptable linearity parameter 
aiK  is processed by AMF with parameters N = 25, b = 1 in 

case of low and middle noise level and by AMF with parameters N = 21, b = 1 in case of high 

noise level; 1 = 0.13, 2 = 0.4 are the thresholds for noise level estimation; LAIs ri, thi are 

smoothed by averaging filters with window lengths N3 = 21, N4 = 15.  

 

Note that suitable parameters of algorithms AMZ and AMH, AMH may differ for other 

signals. Also, the sign for comparison of filtered threshold parameters of Hampel filter [22] 
f

ir , f

ith in (Eq. 7), (Eq. 9) may be inverse. It is recommended to analyze the plots of LAIs f

ir , 

f

ith  to choose better parameters of averaging filters for LAIs and to set thresholds.  

 

Proposed LAMFs are compared to a nonlinear locally-adaptive filter with Z-parameters  

[17, 18], denoted as AZ, and LAMF based on LAI quasi-range Qi [3] denoted as AMQ.  

These adaptive filters are highly effective for the given complex model of one-dimensional 

signal [3, 17, 18, 24, 26].  

 

The algorithm AZ switches the outputs of median filter with small window and -trimmed 

filters with middle and large window lengths [17, 18]. For algorithm AZ [17, 18], median 

filter with window N1 = 5 is used as a component with high dynamic properties and  

-trimmed filters with window lengths N2 = 9, N3 = 13 and trimmed parameters [N2 = 2], 

[N3 = 3], respectively, are used as intermediate and noise-suppressing components.  

The intermediate component of AZ is used as a preliminary filter for calculation of  

Z-parameters. The computational cost of algorithm AZ is not high because it uses simple 

operations of sorting, determination of a sample median, -trimming and averaging.  

Its advantages are also high dynamic properties for low noise level [17, 18, 24, 26].  

 

In the algorithm AMQ [3] the linearity parameter of the sample myriad is adaptively changed 

according to the formula: 

f

ai iK bQ , (12) 

where b is a fixed coefficient, f

iQ is a filtered value of the quasi-range ( ) ( )p q

iQ X X  .  

It is calculated for each i-th sliding window as the difference between the p-th and the q-th 

order statistics of the sorted set of input samples  (1) (2) ( )... NX X X    within a sliding 

window with length N, 1p q N   .  

 

For LAMF AMQ [3], the middle values of window length N = 9 and coefficient b = 0.7 are 

chosen. For filtering the sampled sequence of quasi-range Qi median filter with window N = 9 

is applied. This LAMF does not use “hard” switching of parameters; therefore its 

computational cost is less than that of LAMFs AMZ (Eq. 5) and AMH (Eq. 7), AMH (Eq. 9).  

The advantages of AMQ are the high quality of processing step edge and spikes removal  

[3, 24, 26]. To calculate a sample myriad for LAMFs AMQ, AMZ, AMH the algorithm of 
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minimization of myriad cost function based on numerical Newton technique [1] is used 

because of its good preserving step edge and high robustness [2, 27]. 

 

For not very low probability of spikes, in order to ensure better spike removal, it is expedient 

to use a preliminary robust myriad filter with small window N = 5 (corresponding algorithms 

AZ, AMQ, AMZ, AMH, AMH are denoted as AZpr, AMQpr, AMZpr, AMHpr, AMHpr). 

Parameter K = 0.35 of the preliminary myriad filter is chosen by numerical simulations. 

 

Results and discussions 

Testing and comparison of LAMFs 
The efficiency of the suggested LAMFs AMZ (Eq. 5), AMH (Eq. 7), AMH (Eq. 9) and 

adaptive algorithms AZ [17, 18] and AMQ [3] used for comparison are analyzed on the basis 

of the statistical estimates of the MSE (Eq. 11) (Table 1), where 
1 2i i 

 is MSE calculated for 

the signal segment with indices from i1 to i2, t is integrated MSE calculated for an entire 

complex one-dimensional test signal (Fig. 1). To obtain stable statistical estimates of the filter 

quality, in case of spikes absence, the number of realizations for averaging operation is  

NR = 200, and in case of the spikes presence, it is NR = 500.  

 

As can be seen from the results of numerical simulations (Table 1), LAMFs AMZ (Eq. 5) and 

AMH (Eq. 7), AMH (Eq. 9) have high quality processing efficiency for all considered 

elementary segments of the complex test signal. They have the best integrated performance 

indicators for entire test signal at wide range of Gaussian noise level and in possible spikes 

presence.  

 

For not very low probability of spikes presence, the integral efficiency indicators of the 

LAMFs AMZ (Eq. 5) and AMH (Eq. 7), AMH (Eq. 9) are also higher as compared to those 

of algorithms AZ and AMQ. The advantage, however, is less observable here in comparison 

with the similar cases of spikes absence (Table 1, cases 8-12). The use of a preliminary 

myriad filter [1] with a small window length and adjusted linearity parameter K significantly 

improves the robustness of corresponding nonlinear adaptive algorithms AZpr, AMQpr, 

AMZpr, AMHpr (Table 1, cases 8-9). 

 

Results of filtering by LAMF AMZ  
Due to the adaptation of the linearity parameter K, LAMF AMZ (Eq. 5) overcomes the 

drawback of a standard myriad filter, which involves low efficiency of noise suppression on 

the linearly increasing and decreasing segments depending upon the signal scale [2, 3]. 

LAMF AMZ almost optimally suppresses noise for these signals (Table 1). In cases of 

increasing noise variance and spikes absence, this LAMF provides the best efficiency for the 

entire test signal (Table 1, cases 4-6). In comparison with the basic algorithm AZ, LAMF 

AMZ is significantly efficient on linearly changing segments of the test signal (Table 1). 

LAMF AMZ improves the integrated MSE of AZ in the range from middle to high levels of 

Gaussian noise by   /AZ AMZ AZ

t t t    = 21-28 % (Table 1, cases 4-6).  

 

Results of filtering by LAMF AMH  
LAMF AMH (Eq. 7) and its modification AMH (Eq. 9) effectively preserves a step edge 

while simultaneously suppressing noise in its vicinity and provides the best efficiency of 

noise suppression on the segment of a constant signal in all simulated cases (Table 1).  

These LAMFs also have high dynamical properties while processing piecewise linear and 
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parabolic segments of the complex test signal, as can be seen in the cases from low to middle 

levels of noise (Table 1, cases 1-3, cases 8-9). In comparison with algorithm AZ LAMFs 

AMH and AMH preserve the step edge more effectively and have the highest degree of noise 

suppression on the segment of const signal (Table 1). According to the integral MSE, in cases 

of spikes absence, LAMF AMH improves efficiency of AZ by 16-22 % (Table 1, cases 4-7).  

 

Results of filtering by LAMF AMH  
The LAMF AMH (Eq. 9) has better effectiveness than AMH at a connection point of a 

constant signal and a polynomial curve (x-axis indices 240-260) for all considered cases 

(Table 1) and also has the best local performance indicators for this elementary signal in cases 

of noise dispersion increase (Table 1, cases 3-7). Smaller windows Nij and coefficient bij in 

case of low noise level and larger ones in case of high noise level have made LAMF AMH 

more dynamical (Table 1, cases 1-2) and noise suppressive (Table 1, cases 6-7).  

 

Analysis of signals plots 
The illustration of the output signals for low (Fig. 2), middle (Fig. 3) and high (Fig. 4) levels 

of Gaussian noise of the considered nonlinear adaptive algorithms confirms the numerical 

simulation results. As can be seen from the case of the not low probability of impulse noise 

(Fig. 5), nonlinear adaptive algorithms AZpr, AMQpr, AMZpr, AMHpr, AMHpr remove spikes 

without significant signal distortions, which is also confirmed by the high efficiency 

indicators of these algorithms in spikes presence (Table 1, cases 8-12).  

 

The behavior of the local adaptation parameters of the LAMFs AMZ (Eq. 5) and AMH  

(Eq. 7), AMH (Eq. 9) in cases of low (a
2 = 0.0006) and high (a

2 = 0.06) levels of noise is 

shown in Figs. 6-7. The change of sliding window length N is similar to the change of the 

coefficient b for the corresponding LAMF (not shown).  

 

As can be seen from the plots of the local adaptation parameters (Figs. 6-7), LAMFs AMZ, 

AMH, AMH correctly switch the coefficient b (similarly window length N) to small values in 

the neighborhoods of a step edge (x-axis indices 40-60), piecewise linear functions  

(x-axis indices 90-110, 140-160, 190-210), a connection point of a constant level and a 

polynomial curve (x-axis indices 240-260). This allows adjustment of the myriad filtration to 

the nonlinear mode with high robustness and, therefore, preservation such transitions. Setting 

of a small window length in LAMFs AMZ and AMH, AMH also better preserves a 

polynomial extremum (x-axis indices 265-285) for low level of noise (Fig. 6).  

While processing this elementary segment in case of high level of noise (Fig. 7), LAMF AMZ 

sets a middle window length, and LAMFs AMH, AMH set a large window. As a result, the 

noise is well-smoothed. For LAMF AMZ, there are few errors in hard switching to a middle 

window length on the segments of the linear signal which do not decrease in processing 

quality essentially. For LAMFs AMH, AMH switching errors are less. However, in contrast 

with AMH and AMH, on the linearly changing segments (x-axis indices 110-140, 160-190) 

the LAMF AMZ correctly sets large window length and a linear mode of myriad filtration, 

thus noise is strongly suppressed, which is an advantage of this algorithm.  
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Table 1. Statistical estimates of the filter efficiency according to criteria of MSE (ppm) 

Filter t  10 40 

 

40 60 

 

90 110 

 

110 140 

 

140 160 

 

160 190 

 

190 210 

 

240 260 

 

265 285 

 
1) а

2 = 0.001, Psp = 0.00, NR = 200 

None 998   1023 1025 978 950 986 1041 1024 958 992 

AZ 271 127 355 251 140 553 152 316 610 351 

AMQ 774 152 160 291 304 1237 312 323 4230 308 

AMZ 446 76 999 284 73 906 69 369 1690 398 

AMH 441 65 262 243 229 713 240 291 2104 253 

AMH 342 69 213 226 232 425 252 265 1441 242 

2) а
2 = 0.003, Psp = 0.00, NR = 200 

None 2994 3068 3074 2933 2849 2958 3122 3071 2873 2975 

AZ 690 381 1053 608 401 979 440 750 1599 786 

AMQ 1242 455 498 739 802 1766 882 837 5181 771 

AMZ 794 219 1634 617 202 1379 200 797 2549 940 

AMH 755 195 623 582 614 1100 675 682 2665 651 

AMH 683 206 637 589 676 846 722 652 2002 677 

3) а
2 = 0.006, Psp = 0.00, NR = 200  

None 5988 6135 6147 5866 5698 5917 6244 6142 5747 5950 

AZ 1308 761 2643 1033 780 1555 861 1261 3081 1287 

AMQ 1872 909 1049 1272 1390 2394 1634   1498 6400 1383 

AMZ 1263 422 2548 1023 387 1847 395 1282 3783 1665 

AMH 1226 391 1214 1024 1139 1629 1272 1189 3641 1255 

AMH 1194 413 1315 1094 1323 1463 1402 1206 2901 1346 

4) а
2 = 0.01, Psp = 0.00, NR = 200 

None 9980 10226 10245 9776 9497 9861 10406 10236 9578 9917 

AZ 2204 1268 5855 1557 1270 2336 1451 1879 4930 1923 

AMQ 2653 1515 1875 1900 2060 3087 2526 2262 7882 2139 

AMZ 1848 692 3751 1494 631 2378 655 1787 5358 2585 

AMH 1857 652 2095 1625 1810 2301 2027 1813 5073 2060 

AMH 1883 687 2260 1794 2182 2275 2291 1929 4156 2247 

5) a
2 = 0.03, Psp = 0.00, NR = 200  

None 29939 30677 30735 29329 28492 29583 31218 30708 28734 29752 

AZ 6438 3752 20798 3993 3520 5357 4072 4503 14350 4613 

AMQ 6376 4546 8546 4774 5034 6144 6254 5546 13889 5578 

AMZ 4647 2018 12969 3087 1837 5215 1973 3735 11990 5633 

AMH 5030 1956 8955 4027 4763 6668 5638 4809 11186 5799 

AMH 5060 1931 9683 4096 4926 6360 5251 4470 10882 5574 

6) a
2 = 0.06, Psp = 0.00, NR = 200 

None 59878 61354 61470 58658 56985 59167 62436 61416 57468 59503 

AZ 11328 7477 31811 7445 6820 8953 8007 8250 24747 8499 

AMQ 11898 9092 21890 9007 9289 10399 11173 10159 22049 10458 

AMZ 9059 3989 36379 5086 3654 8218 3903 6034 20585 8533 

AMH 9342 3906 24629 5931 7120 11165 10626 8337 18808 9773 

AMH 9071 3728 25395 5789 6566 10618 9496 7766 18607 9190 

7) a
2 = 0.1, Psp = 0.00, NR = 200 

None 99797 102257 102450 97763 94975 98611 104060 102360 95780 99172 

AZ 17165 12401 42047 12080 11316 13809 12971 13585 34913 13672 

AMQ 18834 15153 35300 14635 14920 16007 17515 16191 32058 16860 

AMZ 13971 6610 53490 7605 6048 11314 6517 8736 33277 12213 

AMH 14071 6511 43111 8284 8874 14531 15070 11195 27522 13932 

AMH 13637 6319 43496 8085 8367 13933 13702 10650 26891 13243 
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Table 1. Statistical estimates of the filter efficiency according to criteria of MSE (ppm) 

(continuation) 

Filter t  10 40 

 

40 60 

 

90 110 

 

110 140 

 

140 160 

 

160 190 

 

190 210 

 

240 260 

 

265 285 

 
8) a

2 = 0.003, Psp = 0.01, nsp = 1.0, NR = 500 

None 12998 13574 11224 13018 12429 14726 11773 14613 12423 14002 

AZ 1196 453 4101 737 564 1382 709 895 3405 816 

AZpr 1018 437 2841 558 460 931 509 637 3323 632 

AMQ 1644 454 2930 761 817 1858 983 879 6986 732 

AMQpr 1530 343 2166 560 587 1563 646 650 7770 551 

AMZ 1472 309 6442 1007 393 1485 631 1486 4318 853 

AMZpr 1277 293 3405 565 384 1176 418 666 5455 605 

AMH 1586 403 7704 985 630 1241 752 995 4620 658 

AMHpr 1295 261 2256 540 509 1214 543 653 6468 539 

AMH 1565 413 7008 1017 713 1032 829 1011 3948 828 

AMHpr 1193 257 2329 543 503 964 554 655 5634 542 

9) а
2 = 0.01, Psp = 0.01, nsp = 1.0, NR = 500 

None 19935 20527 18007 19945 19496 21843 18554 21657 19467 20946 

AZ 2798 1481 8082 1895 1606 2954 1785 2272 7110 2051 

AZpr 2220 1411 4375 1620 1468 2198 1522 1780 5446 1772 

AMQ 3027 1515 4178 1988 2073 3334 2570 2323 9506 1958 

AMQpr 2648 1114 3159 1610 1792   2783 1970 1761 9966 1584 

AMZ 2562 870 8450 2016 894 2767 1115 2633 6952 2288 

AMZpr 2282 928 4694 1564 1119 2475 1239 1753 7388 1783 

AMH 2676 898 8799 2190 1833 2860 2036 2276 6807 1881 

AMHpr 2266 846 3387 1524 1616 2360 1697 1685 8370 1512 

AMH 2812 967 8901 2337 2178 2797 2220 2360   6384 2137 

AMHpr 2170 827 3558 1536 1595 2125 1694 1678   7273 1550 

10) а
2 = 0.01, Psp = 0.03, nsp = 1.0, NR = 500 

None 39945 41144 36340 37851 38959 41577 39797 43052 41595 40505 

AZpr 3015 1727 6724 1812 1687 2554 1856 2071 8618 2136 

AMQpr 3338 1260 5826 1820 2022 2936 2221 2043 12944 1655 

AMZpr 2994   1190 6988 1747 1272 2661 1396 2043 10500 1875 

AMHpr 2971 967 6078   1714 1832 2535 1929 1964 11465 1575 

AMHpr 2907 943 6200 1726 1818 2469 2024 1965 10461 1651 

11) а
2 = 0.03, Psp = 0.1, nsp = 1.0, NR = 500 

None 129519 131771 128347 126106 131582 133284 128623 131746 127932 130284 

AZpr 14408 11242 25418 9598 11225 14611 9894 12509 30448 10712 

AMQpr 11348 6002 21744 7874 9078 9298 9134 9364 31028 6938 

AMZpr 11526 6324 24987 7324 7514 11369 6496 9423 30553 7580 

AMHpr 11037 4901 24406 7851 9922 9600 9247 9578 30786 7461 

AMHpr 11525 4844 25038 8115 10636 10356 9459 10539 30007 8502 

12) а
2 = 0.06, Psp = 0.3, nsp = 1.0, NR = 500 

None 359755 365570 354770 358898 360030 366737 361104 352123 363535 355473 

AZpr 117665 102360 146408 115721 106783 113205 106895 124124 156326 107923 

AMQpr 97843   78575 129604 91183 85693 87609 92219 108811 152163 80953 

AMZpr 93139 70018 139292 86261 76112 85949 76648 100479 158534 69124 

AMHpr 95107 70596 137474 88761 88608 90858 97872 108021 146933 81517 

AMHpr 93297 66414 138177 86973 85831 87856 92391 104864 144214 79180 
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Fig. 2 Processing of the complex test signal with low level of the additive Gaussian noise:  

a) noisy signal (a
2 = 0.001); b) output of AZ; c) output of AMQ;  

d) output of AMZ; e) output of AMH; f) output of AMH. 
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Fig. 3 Processing of the complex test signal with middle level of the additive Gaussian noise:  

a) noisy signal (a
2 = 0.01); b) output of AZ; c) output of AMQ;  

d) output of AMZ; e) output of AMH; f) output of AMH. 
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Fig. 4 Processing of the complex test signal with high level of the additive Gaussian noise:  

a) noisy signal (a
2 = 0.06); b) output of AZ; c) output of AMQ;  

d) output of AMZ; e) output of AMH; f) output of AMH. 
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Fig. 5 Processing of the complex test signal with additive Gaussian and impulse noises:  

a) noisy signal (a
2 = 0.01, Psp = 0.06, nsp = 1); b) output of AZpr; c) output of AMQpr;  

d) output of AMZpr; e) output of AMHpr; f) output of AMHpr. 
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Fig. 6 Local adaptation in case of low noise level: a) input signal;  

b) LAI Zi  QZ i , its filtered values; c) local scale estimator iK , linearity parameter aiK , 

coefficient b of AMZ; d) threshold parameters ri, thi, its smoothed values; e) local scale 

estimator iK , its filtered values, linearity parameter 
aiK , coefficient b of AMH;  

f) local scale estimator f

iK , linearity parameter aiK , coefficient b of AMH. 
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Fig. 7 Local adaptation in case of high noise level: a) input signal; b) LAI Zi  QZ i ,  

its filtered values; c) local scale estimator iK , linearity parameter aiK , coefficient b of AMZ;  

d) threshold parameters ri, thi, its smoothed values; e) local scale estimator iK ,  

its filtered values, linearity parameter aiK , coefficient b of AMH;  

f) local scale estimator f

iK , linearity parameter 
aiK , coefficient b of AMH. 
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The behaviors of the adaptable linearity parameter 
aiK  (Eq. 3) for low (Fig. 6) and high  

(Fig. 7) Gaussian noise levels are similar, but when noise dispersion is increased, the mean 

level of function of 
aiK  is higher, thus the myriad filtering has more linear properties, which 

allows better noise suppression. For high noise level (Fig. 7), a local maximum of the 
aiK  

function occurs in the flat area of the polynomial maximum (x-axis indices 265-285), which 

also leads to better noise smoothing. The mean level of the f

aiK  function at the segments of a 

constant signal (x-axis indices 10-40) is higher for LAMF AMH in comparison to AMH, 

which causes better noise suppression with AMH. LAMF AMH also has smaller values of 
f

aiK  in vicinity of the connection point of the constant and polynomial signals (x-axis indices 

240-260) and respectively provides better dynamic properties for such signals. 

 

Conclusion 
We proposed algorithms for locally adaptive myriad filtering with adaptation of a sample 

myriad linearity parameter K, depending on signal scale local estimates, as well as with 

“hard” switching of the values set for the sliding window lengths and coefficients, which 

influence the parameter K. The proposed LAMFs are shown to preserve a step edge, 

piecewise functions and parabolic extremums effectively due to high dynamic properties for 

nonlinear mode of myriad filtering (small values of the linearity parameter K) and small 

length of the sliding window. LAMFs suppress noise effectively while processing the 

segments of linear behavior of signal and polynomial curves by adjusting the parameter K to a 

linear mode and by increasing the window length.  

 

Having high efficiency for all segments of the considered complex signal, one of the proposed 

algorithms provides almost optimal noise suppression on the segment of linear change of the 

signal. Other algorithm provides higher quality of step-like and constant signal processing.  

In order to improve effectiveness of filtration in cases of low and high noise levels,  

the modified algorithm applies noise level estimation through comparison of a  

locally-adaptive parameter and thresholds. As a result of application of the proposed LAMFs, 

improvement of integral and local performance indicators is shown in comparison to the 

highly effective locally-adaptive algorithms [3, 17, 18]. In case of spikes presence, a 

significant enhancement of the processing quality is shown due to application of the 

preliminary robust myriad filtering.   
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