105,056 research outputs found

    Uniform line fillings

    Get PDF
    Deterministic fabrication of random metamaterials requires filling of a space with randomly oriented and randomly positioned chords with an on-average homogenous density and orientation, which is a nontrivial task. We describe a method to generate fillings with such chords, lines that run from edge to edge of the space, in any dimension. We prove that the method leads to random but on-average homogeneous and rotationally invariant fillings of circles, balls and arbitrary-dimensional hyperballs from which other shapes such as rectangles and cuboids can be cut. We briefly sketch the historic context of Bertrand's paradox and Jaynes' solution by the principle of maximum ignorance. We analyse the statistical properties of the produced fillings, mapping out the density profile and the line-length distribution and comparing them to analytic expressions. We study the characteristic dimensions of the space in between the chords by determining the largest enclosed circles and balls in this pore space, finding a lognormal distribution of the pore sizes. We apply the algorithm to the direct-laser-writing fabrication design of optical multiple-scattering samples as three-dimensional cubes of random but homogeneously positioned and oriented chords.Comment: 10 pages, 12 figures; v3: restructured paper, more references, more graph

    Diffusion maps embedding and transition matrix analysis of the large-scale flow structure in turbulent Rayleigh--B\'enard convection

    Full text link
    By utilizing diffusion maps embedding and transition matrix analysis we investigate sparse temperature measurement time-series data from Rayleigh--B\'enard convection experiments in a cylindrical container of aspect ratio Γ=D/L=0.5\Gamma=D/L=0.5 between its diameter (DD) and height (LL). We consider the two cases of a cylinder at rest and rotating around its cylinder axis. We find that the relative amplitude of the large-scale circulation (LSC) and its orientation inside the container at different points in time are associated to prominent geometric features in the embedding space spanned by the two dominant diffusion-maps eigenvectors. From this two-dimensional embedding we can measure azimuthal drift and diffusion rates, as well as coherence times of the LSC. In addition, we can distinguish from the data clearly the single roll state (SRS), when a single roll extends through the whole cell, from the double roll state (DRS), when two counter-rotating rolls are on top of each other. Based on this embedding we also build a transition matrix (a discrete transfer operator), whose eigenvectors and eigenvalues reveal typical time scales for the stability of the SRS and DRS as well as for the azimuthal drift velocity of the flow structures inside the cylinder. Thus, the combination of nonlinear dimension reduction and dynamical systems tools enables to gain insight into turbulent flows without relying on model assumptions

    Transport in time-dependent dynamical systems: Finite-time coherent sets

    Full text link
    We study the transport properties of nonautonomous chaotic dynamical systems over a finite time duration. We are particularly interested in those regions that remain coherent and relatively non-dispersive over finite periods of time, despite the chaotic nature of the system. We develop a novel probabilistic methodology based upon transfer operators that automatically detects maximally coherent sets. The approach is very simple to implement, requiring only singular vector computations of a matrix of transitions induced by the dynamics. We illustrate our new methodology on an idealized stratospheric flow and in two and three dimensional analyses of European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis data

    Critical Phenomena in Quasi-Two-Dimensional Vibrated Granular Systems

    Full text link
    The critical phenomena associated to the liquid to solid transition of quasi-two-dimensional vibrated granular systems is studied using molecular dynamics simulations of the inelastic hard sphere model. The critical properties are associated to the fourfold bond-orientational order parameter χ4\chi_4, which measures the level of square crystallization of the system. Previous experimental results have shown that the transition of χ4\chi_4, when varying the vibration amplitude, can be either discontinuous or continuous, for two different values of the height of the box. Exploring the amplitude-height phase space, a transition line is found, which can be either discontinuous or continuous, merging at a tricritical point and the continuous branch ends in an upper critical point. In the continuous transition branch, the critical properties are studied. The exponent associated to the amplitude of the order parameter is β=1/2\beta=1/2, for various system sizes, in complete agreement with the experimental results. However, the fluctuations of χ4\chi_4 do not show any critical behavior, probably due to crossover effects by the close presence of the tricritical point. Finally, in quasi-one-dimensional systems, the transition is only discontinuous, limited by one critical point, indicating that two is the lower dimension for having a tricritical point
    • …
    corecore