3 research outputs found

    Reconstructing plant architecture from 3D laser scanner data

    Full text link
    En infographie, les modèles virtuels de plantes sont de plus en plus réalistes visuellement. Cependant, dans le contexte de la biologie et l'agronomie, l'acquisition de modèles précis de plantes réelles reste un problème majeur pour la construction de modèles quantitatifs du développement des plantes. Récemment, des scanners laser 3D permettent d'acquérir des images 3D avec pour chaque pixel une profondeur correspondant à la distance entre le scanner et la surface de l'objet visé. Cependant, une plante est généralement un ensemble important de petites surfaces sur lesquelles les méthodes classiques de reconstruction échouent. Dans cette thèse, nous présentons une méthode pour reconstruire des modèles virtuels de plantes à partir de scans laser. Mesurer des plantes avec un scanner laser produit des données avec différents niveaux de précision. Les scans sont généralement denses sur la surface des branches principales mais recouvrent avec peu de points les branches fines. Le cur de notre méthode est de créer itérativement un squelette de la structure de la plante en fonction de la densité locale de points. Pour cela, une méthode localement adaptative a été développée qui combine une phase de contraction et un algorithme de suivi de points. Nous présentons également une procédure d'évaluation quantitative pour comparer nos reconstructions avec des structures reconstruites par des experts de plantes réelles. Pour cela, nous explorons d'abord l'utilisation d'une distance d'édition entre arborescence. Finalement, nous formalisons la comparaison sous forme d'un problème d'assignation pour trouver le meilleur appariement entre deux structures et quantifier leurs différences. (Résumé d'auteur

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Representing and Understanding Non-Manifold Objects

    Get PDF
    Solid Modeling is a well-established field. The significance of the contributions of this field is visible in the availability of abundant commercial and free modeling tools for the applications of CAD, animation, visualization etc. There are various approaches to modeling shapes. A common problem to all of them however, is the handling of non-manifold shapes. Manifold shapes are shapes with the property of topological ``smoothness'' at the local neighbourhood of every point. Objects that contain one or more points that lack this smoothness are all considered non-manifold. Non-manifold objects form a huge catagory of shapes. In the field of solid modeling, solutions typically limit the application domain to manifold shapes. Where the occurrence of non-manifold shapes is inevitable, they are often processed at a high cost. The lack of understanding on the nature of non-manifold shapes is the main cause of it. There is a tremendous gap between the well-established mathematical theories in topology and the materialization of such knowledge in the discrete combinatorial domain of computer science and engineering. The motivation of this research is to bridge this gap between the two. We present a characterization of non-manifoldness in 3D simplicial shapes. Based on this characterization, we propose data structures to address the applicational needs for the representation of 3D simplicial complexes with mixed dimensions and non-manifold connectivities, which is an area that is greatly lacking in the literature. The availability of a suitable data structure makes the structural analysis of non-manifold shapes feasible. We address the problem of non-manifold shape understanding through a structural analysis that is based on decomposition
    corecore