10 research outputs found

    Topologically Trivial Closed Walks in Directed Surface Graphs

    Get PDF
    Let G be a directed graph with n vertices and m edges, embedded on a surface S, possibly with boundary, with first Betti number beta. We consider the complexity of finding closed directed walks in G that are either contractible (trivial in homotopy) or bounding (trivial in integer homology) in S. Specifically, we describe algorithms to determine whether G contains a simple contractible cycle in O(n+m) time, or a contractible closed walk in O(n+m) time, or a bounding closed walk in O(beta (n+m)) time. Our algorithms rely on subtle relationships between strong connectivity in G and in the dual graph G^*; our contractible-closed-walk algorithm also relies on a seminal topological result of Hass and Scott. We also prove that detecting simple bounding cycles is NP-hard. We also describe three polynomial-time algorithms to compute shortest contractible closed walks, depending on whether the fundamental group of the surface is free, abelian, or hyperbolic. A key step in our algorithm for hyperbolic surfaces is the construction of a context-free grammar with O(g^2L^2) non-terminals that generates all contractible closed walks of length at most L, and only contractible closed walks, in a system of quads of genus g >= 2. Finally, we show that computing shortest simple contractible cycles, shortest simple bounding cycles, and shortest bounding closed walks are all NP-hard

    Topologically Trivial Closed Walks in Directed Surface Graphs

    Full text link
    Let GG be a directed graph with nn vertices and mm edges, embedded on a surface SS, possibly with boundary, with first Betti number β\beta. We consider the complexity of finding closed directed walks in GG that are either contractible (trivial in homotopy) or bounding (trivial in integer homology) in SS. Specifically, we describe algorithms to determine whether GG contains a simple contractible cycle in O(n+m)O(n+m) time, or a contractible closed walk in O(n+m)O(n+m) time, or a bounding closed walk in O(β(n+m))O(\beta (n+m)) time. Our algorithms rely on subtle relationships between strong connectivity in GG and in the dual graph G∗G^*; our contractible-closed-walk algorithm also relies on a seminal topological result of Hass and Scott. We also prove that detecting simple bounding cycles is NP-hard. We also describe three polynomial-time algorithms to compute shortest contractible closed walks, depending on whether the fundamental group of the surface is free, abelian, or hyperbolic. A key step in our algorithm for hyperbolic surfaces is the construction of a context-free grammar with O(g2L2)O(g^2L^2) non-terminals that generates all contractible closed walks of length at most L, and only contractible closed walks, in a system of quads of genus g≥2g\ge2. Finally, we show that computing shortest simple contractible cycles, shortest simple bounding cycles, and shortest bounding closed walks are all NP-hard.Comment: 30 pages, 18 figures; fixed several minor bugs and added one figure. An extended abstraction of this paper will appear at SOCG 201

    Tightening curves and graphs on surfaces

    Get PDF
    Any continuous deformation of closed curves on a surface can be decomposed into a finite sequence of local changes on the structure of the curves; we refer to such local operations as homotopy moves. Tightening is the process of deforming given curves into their minimum position; that is, those with minimum number of self-intersections. While such operations and the tightening process has been studied extensively, surprisingly little is known about the quantitative bounds on the number of homotopy moves required to tighten an arbitrary curve. An unexpected connection exists between homotopy moves and a set of local operations on graphs called electrical transformations. Electrical transformations have been used to simplify electrical networks since the 19th century; later they have been used for solving various combinatorial problems on graphs, as well as applications in statistical mechanics, robotics, and quantum mechanics. Steinitz, in his study of 3-dimensional polytopes, looked at the electrical transformations through the lens of medial construction, and implicitly established the connection to homotopy moves; later the same observation has been discovered independently in the context of knots. In this thesis, we study the process of tightening curves on surfaces using homotopy moves and their consequences on electrical transformations from a quantitative perspective. To derive upper and lower bounds we utilize tools like curve invariants, surface theory, combinatorial topology, and hyperbolic geometry. We develop several new tools to construct efficient algorithms on tightening curves and graphs, as well as to present examples where no efficient algorithm exists. We then argue that in order to study electrical transformations, intuitively it is most beneficial to work with monotonic homotopy moves instead, where no new crossings are created throughout the process; ideas and proof techniques that work for monotonic homotopy moves should transfer to those for electrical transformations. We present conjectures and partial evidence supporting the argument

    Finding one tight cycle

    No full text
    A cycle on a combinatorial surface is tight if it as short as possible in its (free) homotopy class. We describe an algorithm to compute a single tight, non-contractible, simple cycle on a given orientable combinatorial surface in O(n log n) time. The only method previously known for this problem was to compute the globally shortest non-contractible or non-separating cycle in O(min{g 3, n} n logn) time, where g is the genus of the surface. As a consequence, we can compute the shortest cycle freely homotopic to a chosen boundary cycle in O(n log n) time and a tight octagonal decomposition in O(gn log n) time.
    corecore