506,915 research outputs found

    Experimental analysis of the accessibility of drawings with few segments

    Get PDF
    The visual complexity of a graph drawing is defined as the number of geometric objects needed to represent all its edges. In particular, one object may represent multiple edges, e.g., one needs only one line segment to draw two collinear incident edges. We study the question if drawings with few segments have a better aesthetic appeal and help the user to asses the underlying graph. We design an experiment that investigates two different graph types (trees and sparse graphs), three different layout algorithms for trees, and two different layout algorithms for sparse graphs. We asked the users to give an aesthetic ranking on the layouts and to perform a furthest-pair or shortest-path task on the drawings.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Extended LTLvis Motion Planning interface (Extended Technical Report)

    Full text link
    This paper introduces an extended version of the Linear Temporal Logic (LTL) graphical interface. It is a sketch based interface built on the Android platform which makes the LTL control interface more straightforward and friendly to nonexpert users. By predefining a set of areas of interest, this interface can quickly and efficiently create plans that satisfy extended plan goals in LTL. The interface can also allow users to customize the paths for this plan by sketching a set of reference trajectories. Given the custom paths by the user, the LTL specification and the environment, the interface generates a plan balancing the customized paths and the LTL specifications. We also show experimental results with the implemented interface.Comment: 8 pages, 15 figures, a technical report for the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016

    Matching with Couples Revisited

    Get PDF
    It is well known that a stable matching in a many-to-one matching market with couples need not exist. We introduce a new matching algorithm for such markets and show that for a general class of large random markets the algorithm will find a stable matching with high probability. In particular we allow the number of couples to grow at a near-linear rate. Furthermore, truth-telling is an approximated equilibrium in the game induced by the new matching algorithm. Our results are tight: for markets in which the number of couples grows at a linear rate, we show that with constant probability no stable matching exists

    Algorithms and Complexity Results for Persuasive Argumentation

    Get PDF
    The study of arguments as abstract entities and their interaction as introduced by Dung (Artificial Intelligence 177, 1995) has become one of the most active research branches within Artificial Intelligence and Reasoning. A main issue for abstract argumentation systems is the selection of acceptable sets of arguments. Value-based argumentation, as introduced by Bench-Capon (J. Logic Comput. 13, 2003), extends Dung's framework. It takes into account the relative strength of arguments with respect to some ranking representing an audience: an argument is subjectively accepted if it is accepted with respect to some audience, it is objectively accepted if it is accepted with respect to all audiences. Deciding whether an argument is subjectively or objectively accepted, respectively, are computationally intractable problems. In fact, the problems remain intractable under structural restrictions that render the main computational problems for non-value-based argumentation systems tractable. In this paper we identify nontrivial classes of value-based argumentation systems for which the acceptance problems are polynomial-time tractable. The classes are defined by means of structural restrictions in terms of the underlying graphical structure of the value-based system. Furthermore we show that the acceptance problems are intractable for two classes of value-based systems that where conjectured to be tractable by Dunne (Artificial Intelligence 171, 2007)

    Iterative Delegations in Liquid Democracy with Restricted Preferences

    Full text link
    In this paper, we study liquid democracy, a collective decision making paradigm which lies between direct and representative democracy. One main feature of liquid democracy is that voters can delegate their votes in a transitive manner so that: A delegates to B and B delegates to C leads to A delegates to C. Unfortunately, this process may not converge as there may not even exist a stable state (also called equilibrium). In this paper, we investigate the stability of the delegation process in liquid democracy when voters have restricted types of preference on the agent representing them (e.g., single-peaked preferences). We show that various natural structures of preferences guarantee the existence of an equilibrium and we obtain both tractability and hardness results for the problem of computing several equilibria with some desirable properties
    • …
    corecore