941 research outputs found

    Succinct Indexable Dictionaries with Applications to Encoding kk-ary Trees, Prefix Sums and Multisets

    Full text link
    We consider the {\it indexable dictionary} problem, which consists of storing a set S{0,...,m1}S \subseteq \{0,...,m-1\} for some integer mm, while supporting the operations of \Rank(x), which returns the number of elements in SS that are less than xx if xSx \in S, and -1 otherwise; and \Select(i) which returns the ii-th smallest element in SS. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+o(n)+O(lglgm){\cal B}(n,m) + o(n) + O(\lg \lg m) bits to store a set of size nn, where {\cal B}(n,m) = \ceil{\lg {m \choose n}} is the minimum number of bits required to store any nn-element subset from a universe of size mm. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lglgm)O(\lg \lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: An information-theoretically optimal representation of a kk-ary cardinal tree that supports standard operations in constant time, A representation of a multiset of size nn from {0,...,m1}\{0,...,m-1\} in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports (appropriate generalizations of) \Rank and \Select operations in constant time, and A representation of a sequence of nn non-negative integers summing up to mm in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports prefix sum queries in constant time.Comment: Final version of SODA 2002 paper; supersedes Leicester Tech report 2002/1

    Succinct Data Structures for Retrieval and Approximate Membership

    Get PDF
    The retrieval problem is the problem of associating data with keys in a set. Formally, the data structure must store a function f: U ->{0,1}^r that has specified values on the elements of a given set S, a subset of U, |S|=n, but may have any value on elements outside S. Minimal perfect hashing makes it possible to avoid storing the set S, but this induces a space overhead of Theta(n) bits in addition to the nr bits needed for function values. In this paper we show how to eliminate this overhead. Moreover, we show that for any k query time O(k) can be achieved using space that is within a factor 1+e^{-k} of optimal, asymptotically for large n. If we allow logarithmic evaluation time, the additive overhead can be reduced to O(log log n) bits whp. The time to construct the data structure is O(n), expected. A main technical ingredient is to utilize existing tight bounds on the probability of almost square random matrices with rows of low weight to have full row rank. In addition to direct constructions, we point out a close connection between retrieval structures and hash tables where keys are stored in an array and some kind of probing scheme is used. Further, we propose a general reduction that transfers the results on retrieval into analogous results on approximate membership, a problem traditionally addressed using Bloom filters. Again, we show how to eliminate the space overhead present in previously known methods, and get arbitrarily close to the lower bound. The evaluation procedures of our data structures are extremely simple (similar to a Bloom filter). For the results stated above we assume free access to fully random hash functions. However, we show how to justify this assumption using extra space o(n) to simulate full randomness on a RAM

    Constructing Minimal Perfect Hash Functions Using SAT Technology

    Full text link
    Minimal perfect hash functions (MPHFs) are used to provide efficient access to values of large dictionaries (sets of key-value pairs). Discovering new algorithms for building MPHFs is an area of active research, especially from the perspective of storage efficiency. The information-theoretic limit for MPHFs is 1/(ln 2) or roughly 1.44 bits per key. The current best practical algorithms range between 2 and 4 bits per key. In this article, we propose two SAT-based constructions of MPHFs. Our first construction yields MPHFs near the information-theoretic limit. For this construction, current state-of-the-art SAT solvers can handle instances where the dictionaries contain up to 40 elements, thereby outperforming the existing (brute-force) methods. Our second construction uses XOR-SAT filters to realize a practical approach with long-term storage of approximately 1.83 bits per key.Comment: Accepted for AAAI 202

    Advances in Learning Bayesian Networks of Bounded Treewidth

    Full text link
    This work presents novel algorithms for learning Bayesian network structures with bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed-integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in uniformly sampling kk-trees (maximal graphs of treewidth kk), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that kk-tree. Some properties of these methods are discussed and proven. The approaches are empirically compared to each other and to a state-of-the-art method for learning bounded treewidth structures on a collection of public data sets with up to 100 variables. The experiments show that our exact algorithm outperforms the state of the art, and that the approximate approach is fairly accurate.Comment: 23 pages, 2 figures, 3 table
    corecore