21,944 research outputs found

    Covering Points by Disjoint Boxes with Outliers

    Get PDF
    For a set of n points in the plane, we consider the axis--aligned (p,k)-Box Covering problem: Find p axis-aligned, pairwise-disjoint boxes that together contain n-k points. In this paper, we consider the boxes to be either squares or rectangles, and we want to minimize the area of the largest box. For general p we show that the problem is NP-hard for both squares and rectangles. For a small, fixed number p, we give algorithms that find the solution in the following running times: For squares we have O(n+k log k) time for p=1, and O(n log n+k^p log^p k time for p = 2,3. For rectangles we get O(n + k^3) for p = 1 and O(n log n+k^{2+p} log^{p-1} k) time for p = 2,3. In all cases, our algorithms use O(n) space.Comment: updated version: - changed problem from 'cover exactly n-k points' to 'cover at least n-k points' to avoid having non-feasible solutions. Results are unchanged. - added Proof to Lemma 11, clarified some sections - corrected typos and small errors - updated affiliations of two author

    The Maximum Exposure Problem

    Get PDF
    Given a set of points P and axis-aligned rectangles R in the plane, a point p in P is called exposed if it lies outside all rectangles in R. In the max-exposure problem, given an integer parameter k, we want to delete k rectangles from R so as to maximize the number of exposed points. We show that the problem is NP-hard and assuming plausible complexity conjectures is also hard to approximate even when rectangles in R are translates of two fixed rectangles. However, if R only consists of translates of a single rectangle, we present a polynomial-time approximation scheme. For general rectangle range space, we present a simple O(k) bicriteria approximation algorithm; that is by deleting O(k^2) rectangles, we can expose at least Omega(1/k) of the optimal number of points

    Matching random colored points with rectangles

    Get PDF
    Let S ¿ [0, 1]2 be a set of n points, randomly and uniformly selected. Let R ¿ B be a random partition, or coloring, of S in which each point of S is included in R uniformly at random with probability 1/2. We study the random number M(n) of points of S that are covered by the rectangles of a maximum strong matching of S with axis-aligned rectangles. The matching consists of closed rectangles that cover exactly two points of S of the same color. A matching is strong if all its rectangles are pairwise disjoint. We prove that almost surely M(n) = 0.83 n for n large enough. Our approach is based on modeling a deterministic greedy matching algorithm, that runs over the random point set, as a Markov chain.Postprint (published version

    On Semantic Word Cloud Representation

    Full text link
    We study the problem of computing semantic-preserving word clouds in which semantically related words are close to each other. While several heuristic approaches have been described in the literature, we formalize the underlying geometric algorithm problem: Word Rectangle Adjacency Contact (WRAC). In this model each word is associated with rectangle with fixed dimensions, and the goal is to represent semantically related words by ensuring that the two corresponding rectangles touch. We design and analyze efficient polynomial-time algorithms for some variants of the WRAC problem, show that several general variants are NP-hard, and describe a number of approximation algorithms. Finally, we experimentally demonstrate that our theoretically-sound algorithms outperform the early heuristics
    corecore