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Abstract

Let S ⊂ [0, 1]2 be a set of n points, randomly and uni-
formly selected. Let R ∪B be a random partition, or
coloring, of S in which each point of S is included in R
uniformly at random with probability 1/2. We study
the random number M(n) of points of S that are cov-
ered by the rectangles of a maximum strong matching
of S with axis-aligned rectangles. The matching con-
sists of closed rectangles that cover exactly two points
of S of the same color. A matching is strong if all its
rectangles are pairwise disjoint. We prove that al-
most surely M(n) ≥ 0.83n for n large enough. Our
approach is based on modeling a deterministic greedy
matching algorithm, that runs over the random point
set, as a Markov chain.

1 Introduction

Given a point set S ⊂ R2 of n points, and a class C of
geometric objects, a geometric matching of S is a set
M ⊆ C such that each element of M contains exactly
two points of S and every point of S lies in at most one
element of M . A geometric matching is strong if the
geometric objects are pairwise disjoint, and perfect if
every point of S belongs to (or is covered by) some
element of M . This type of geometric matching prob-
lems was considered by Ábrego et al. [1], who studied
the existence and properties of matchings for point
sets in the plane when C is the class of axis-aligned
squares, or the class of disks.

Let S = R ∪ B ⊂ R2 be a set of n colored points
in the plane, each point colored red or blue, where
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R and B are the sets of red and blue points, respec-
tively. A geometric matching of S is called monochro-
matic if all matching objects cover points of the same
color, and bichromatic if all matching objects cover
points of different colors. For example, monochro-
matic matchings of two-colored point sets in the plane
with straight segments have been studied [4, 5]. In the
case of bichromatic matchings with straight segments,
a classical result in discrete geometry asserts that for
any planar point set S consisting of n red points and n
blue points in general position (i.e., no three points of
S are collinear) there exists a perfect, strong bichro-
matic matching of S with straight segments.

In this paper, we consider strong monochromatic
matchings with axis-aligned rectangles. Every rect-
angle will be axis-aligned and a closed set.

Caraballo et al. [2] studied monochromatic strong
matchings of S with rectangles from the algorith-
mic point of view. That is, the problem of find-
ing a monochromatic strong matching of S with the
maximum number of rectangles; proving that the
problem is NP-hard and giving a polynomial-time 4-
approximation algorithm. As noted by Caraballo et
al., this problem is a special case of the Maximum In-
dependent Set of Rectangles problem (MISR): Given
a finite set R of rectangles in the plane, find a subset
R′ ⊆ R of maximum cardinality, denoted α(R), such
that every pair of rectangles in R′ are disjoint.

Indeed, suppose that we want to find a monochro-
matic matching of S with the maximum number of
rectangles. For every distinct p, q ∈ R2, let D(p, q)
be the minimum axis-aligned rectangle that encloses
p and q. Let R(S) be the set of all rectangles D(p, q)
such that p, q ∈ S, p and q have the same color, and
D(p, q) contains no points of S different from p and q.
Finding a monochromatic strong matching of S with
the maximum number of rectangles is equivalent to
finding in R(S) a maximum subset of pairwise dis-
joint rectangles, whose size is α(R(S)). That is, to
solving the MISR problem in R(S).

We study monochromatic strong matchings of S
with rectangles from the combinatorial point of view,
and from this point forward, every rectangle will cover
precisely two points of S. Point sets S = R ∪B exist
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in which no matching rectangle is possible (e.g., S is a
color-alternating sequence of points on the line y = x),
and point sets in which a perfect strong matching with
rectangles exists (e.g., an even number of red points
in the negative part of the line y = x, and an even
number of blue points in the positive part). These
two extreme cases show that it is not worth studying
the number α(R(S)) for fixed, or given, colored point
sets S. Instead, we want to study α(R(S)) when S
is a random point set in the square [0, 1]2, in which
the positions of the n points of S are random and the
color of each point of S is also random. Formally:

Let n > 0, and let S ⊂ [0, 1]2 be a set of n points,
randomly and uniformly selected. Let R ∪ B be a
random partition (i.e., coloring) of S in which each
point of S is included in R uniformly at random
with probability 1/2. We study the random variable
M(n) = 2 · α(R(S)) equal to the number of points of
S that are covered by the rectangles of a maximum
monochromatic strong matching of S with rectangles.

Given a set S of n points, randomly and uniformly
selected in the square [0, 1]2, Chen et al. [3] stud-
ied a similar variable: the random variable α(D(S)),
where D(S) is the random graph with vertex set S
and two points p, q ∈ S define an edge if and only if
D(p, q) ∩ S = {p, q}. Here, α(D(S)) denotes the size
of a maximum independent set of D(S).

One result of Chen et al. [3, Theorem 1] states
that if n tends to infinity, then we have α(D(S)) =
O(n(log2 log n)/ log n) with probability tending to 1.
This result implies that if C(n) denotes the num-
ber of points of S that are covered by a maximum
monochromatic matching of S with rectangles, where
the rectangles may overlap (i.e., the matching is not
necessarily strong), then C(n) = n− o(n) with prob-
ability tending to 1. In fact, let M ′ be a maximum
monochromatic matching of S with rectangles, where
M ′ is not necessarily strong, and let S′ ⊂ S be the
points not covered by M ′. Note that at least |S′|/2
points of S′ have the same color, and they form an
independent set in the graph D(S). Then, with prob-
ability tending to 1, we have that M ′ covers at least
n−|S′| = n−O(n(log2 log n)/ log n) = n−o(n) points.

2 Preliminaries

Since for matching S with rectangles, only the left-to-
right and bottom-to-top orders of S are relevant, and
since the probability that two points of S are in the
same vertical or horizontal line is zero, we consider S
equal to the point set Sπ = {(i, π(i)) | i = 1, 2, . . . , n},
where π : {1, 2, . . . , n} → {1, 2, . . . , n} is a randomly
and uniformly selected permutation. This assumption
was also done by Chen et al. [3].

We have implemented a program that, given n, gen-
erates a uniform random permutation π, and selects
the color of each p ∈ Sπ (red or blue) randomly and

n = 1000 n = 10000

k mean sdev mean sdev

1 0.6653 0.0175 0.6673 0.0052

2 0.7948 0.0104 0.7934 0.0036

3 0.8301 0.0097 0.8304 0.0034

4 0.8555 0.0094 0.8562 0.0028

5 0.8727 0.0090 0.8736 0.0026

6 0.8860 0.0087 0.8864 0.0026

∞ 0.9724 0.0062 0.9780 0.0022

Table 1: The experimental results obtained when running
the greedy matching algorithm for n ∈ {1000, 10000}, pa-
rameterized with k ∈ [1..6], or not parameterized (k = ∞).
For each combination n, k, we run the algorithm 100 times,
and measured the mean and standard deviation of the ra-
tio between the total number of matched points and n.

uniformly. The program then runs a deterministic
algorithm on Sπ = R ∪ B that greedily finds a maxi-
mum independent subset of rectangles in R(Sπ). The
algorithm iterates the points of Sπ from left to right,
and for each point p in the iteration, it performs the
following action: If p is not matched with any point
prior to p in the iteration, it finds the first point q to
the right of p such that D(p, q) ∈ R(Sπ) and D(p, q)
has empty intersection with all matching rectangles
already reported. If q exists, the algorithm reports
D(p, q) as a matching rectangle. In any case, regard-
less of whether q exists, the algorithm continues the
iteration to the next unmatched point p.

For large n, say n = 10000, the implemented al-
gorithm reports a matching covering approximately
97
100n of the points. Then, it seems that M(n) ≥ 97

100n
for n large enough and probability close to 1. Ana-
lyzing the algorithm, when run over the random Sπ,
seems to be a good approach for obtaining a high
lower bound for M(n). One way to analyze the al-
gorithm is to consider a parameterized version of it,
with a parameter k, such that each unmatched point
p finds its match point q among only the next k points
of Sπ to the right of p. Let Ak denote this parameter-
ized algorithm. For experimental results, see Table 1.

We show how to model (an adaptation of) Ak as a
Markov chain, for any k ∈ {1, 2, . . .}. Then, we show
that A3 almost surely guarantees M(n) ≥ 83

100n, for
n large enough, by computing the stationary distri-
bution of the Markov chain and applying the Ergodic
theorem. See [6] for the theory on Markov chains.

3 The Markov chains

We consider S = Sπ, and whenever we say point i,
for i ∈ {1, 2, . . . , n}, or just i when it is clear from the
context, we are referring to the point pi := (i, π(i)) ∈
S. Let color(i) ∈ {R,B} denote the color of point i.

Let k ∈ {1, 2, 3, . . .} be a constant, and let Ãk be
the following adaptation of algorithm Ak, consisting
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in the next idea: Suppose that Ak matches points i
and j, with i < j ≤ i+ k, when the iteration of Sπ is
on point i. Ãk iterates Sπ from left to right, and will
also match i and j but, in contrast with Ak, when
the iteration is on j, or on a point to the right of j.
Using Ãk instead of Ak, allows us to describe in a
more compact way the states of the memory of the
algorithm during the iteration of the elements of Sπ.

Let E(j) be the data structure associated with
point j ∈ {1, 2, . . . , n}, that is maintained by Ãk dur-
ing the iteration of Sπ. For any j, let i = i(j) be the
smallest element in the set {max(1, j−(k−1)), . . . , j}
such that the point i is not matched, and each point
in {i+ 1, . . . , j} is matched with a point to the left of
i or is not yet matched. If i exists, then E(j) consists
of the following elements:

• The set U(j) ⊆ {i, i+ 1, . . . , j} of the points that
are not matched, with i ∈ U(j).

• The set Rect(j) of the (pairwise disjoint) rectan-
gles that match the points in {i+1, . . . , j}\U(j)
with points to the left of i.

• The number f(j) of points of Sπ that are matched
while the iteration is at point j.

If i does not exist, then E(j) consists of the same
three above elements with U(j) = ∅ and Rect(j) = ∅.

For j = 1, we have U(1) = {1}, Rect(1) = ∅, and
f(1) = 0. We show now how to obtain E(j + 1) from
E(j), for any j ∈ {1, . . . , n − 1}. First, we match
points i and j + 1 if and only if j + 1 ≤ i + k,
color(i) = color(j + 1), and the rectangle D(pi, pj+1)
does not overlap any rectangle in Rect(j). After that,
we match other points in (U(j) \ {i}) ∪ {j + 1} if
and only if i was matched in the previuos step, or we
have finished with point i. We say that we have fin-
ished with point i if there do not exist more chances
for point i to be matched, which is equivalent to
i + k ≤ j + 1. This final matching procedure con-
sists in running the original algorithm Ak with input
the points {i + 1, . . . , j, j + 1}, but with the extra
condition that the algorithm terminates if the current
point t on the iteration of {i+1, . . . , j, j+1} from left
to right, cannot be matched with any other one to its
right. This is because t must find its match among
the points in {j + 2, . . . , t + k}, before any matching
between points in {t + 1, . . . , j + 1} occurs. We set
f(j + 1) equal to the total number of points matched
in the above steps. Obtaining U(j+1) and Rect(j+1)
is straightforward.

Let j ∈ {1, 2, . . . , n}. The state of E(j) is the 2-
tuple formed by: As first component, (a certificate of)
the relative positions between the points of U(j) and
the rectangles of Rect(j), together with the color of
each point of U(j). If the leftmost point is blue, then
we switch the color of every point such that the left-
most one is always red. As second component, f(j).
We say that two states e and e′ are equal (i.e., e = e′)

j + 1

i

j + 1

i

j + 1
i

j + 1

i

j + 1

i

j + 1
i

i

j

E(j), Xj

E(j + 1) Xj+1
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e4

e5

e6

e6

e8
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Figure 1: Example of the data structure E(j), its state
Xj = e3, and the states in the neighborhood N(e3) =
{e4, e5, e6, e6, e7, e8} corresponding to E(j + 1), for each
position and color of point j + 1. Note that f(e6) = 2,
and f(e) = 0 for all e ∈ {e4, e5, e7, e8}.

if: (i) the first components are equal, or one first com-
ponent is symmetric to the other in the vertical direc-
tion, and (ii) the second components are equal.

Let E = {e1, e2, . . . , eN} be the set of all possible
states of E(j), which is a finite set, and let Xj ∈ E
be the random variable equal to the state of E(j).
Let e ∈ E be a state, and assume that e is the state
of E(j) for some j. Let f(e) = f(j) (with abuse
of notation), and let N(e) be the neighborhood of e,
which is the multiset consisting of the state of E(j+1)
for every color and every different relative position,
with respect to the elements of both U(j) and Rect(j),
of point j + 1. See for example Figure 1.

Lemma 1 Let e, e′ ∈ E be two states. For every
j ≥ 2, we have:

Prob(Xj+1 = e′ | Xj = e) =
m

2 (|U(j)| + 2|Rect(j)| + 1)
,

where m is the multiplicity of e′ in N(e).

Proof. Through each point of U(j) draw a hori-
zontal line, and for each rectangle of Rect(j) draw
a horizontal line through the top side and a hori-
zontal line through the bottom side. Each of these
K = |U(j)|+ 2|Rect(j)| lines goes through a different
element of Sπ, subdividing the plane into K+1 strips.
Since the point j + 1 is to the right of every point of
U(j) and every rectangle of Rect(j), its relative posi-
tion w.r.t. the elements of U(j) and Rect(j) is to be in
one of these strips, and this happens with probability
1/(K + 1). Furthermore, the color of point j + 1 is
given with probability 1/2. The lemma follows. �

Note that Prob(Xj+1 = xj+1 | Xj = xj , . . . , X1 =
x1) = Prob(Xj+1 = xj+1 | Xj = xj) for all
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x1, . . . , xj+1 ∈ E such that Prob(Xj = xj , . . . , X1 =
x1) > 0. Thus, (Xn)n≥1 is a Markov chain, denoted
Ck, over the set E = {e1, e2, . . . , eN} of states. Let P
be the transition matrix, of dimensions N ×N , such
that Pi,j = Prob(X`+1 = ej | X` = ei). The key ob-
servation is that the total number of points matched
by Ãk is precisely Mk(n) :=

∑n
j=1 f(Xj).

A Markov chain is irreducible if with positive prob-
ability any state can be reached from any other
state [6]. It can be proved that Ck is irreducible. Since
Ck has a finite state set, it has a unique stationary dis-
tribution s = (s1, s2, . . . , sN ), which is the solution of
the system s = s · P, s1 + s2 + · · · + sN = 1
of linear equations [6]. Furthermore, since f(e) ∈{

0, 2, 4, . . . , 2dk+1
2 e
}

for all e ∈ E , the function f is
bounded and then the Ergodic theorem ensures

lim
n→∞

Mk(n)

n
= lim

n→∞

1

n

n∑
j=1

f(Xj) =
N∑
i=1

sif(ei),

almost surely [6]. Let αk =
∑N
i=1 sif(ei). We then

arrive to the main result of this paper:

Theorem 2 Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be
a uniform random permutation. Let Sπ = {(i, π(i)) |
i = 1, 2, . . . , n} be a random point set, where the
color (red or blue) of each point of Sπ is selected
randomly and uniformly with probability 1/2. Let
k ∈ {1, 2, 3, . . .} be a constant. For all constant ε > 0
and n large enough, almost surely the number Mk(n)
of points of Sπ that are matched by the algorithm Ãk
satisfies Mk(n) ≥ (αk − ε)n.

4 The Markov chain for k = 3

Using algorithm Ã3, we give a precise value for α3.
In Table 2, we describe the states, and the transi-
tions between the states, of the Markov chain C3.
Since f(e) = 2 for all e ∈ {e2, e6, e9, e10, e16, e17, e18},
f(e11) = 4, f(e) = 0 for all other state e, and the
stationary distribution s = (s1, . . . , s18) satisfies

s2 = 167959
816233 , s6 = 69640

816233 , s9 = 6800
816233 , s10 = 58650

816233 ,

s11 = 13600
816233 , s16 = 5950

816233 , s17 = 1360
816233 , s18 = 1190

816233 ,

we obtain

α3 = 2(s2 + s6 + s9 + s10 + s16 + s17 + s18) + 4s11

= 677498
816233 ≈ 0.830030151.

By Theorem 2, taking ε = α3 − 0.83 > 0, for n large
enough we have almost surely that M(n) ≥M3(n) ≥
0.83n. It can be noted in Table 1 that in practice this
lower bound is satisfied.
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