349 research outputs found

    Compositional Reasoning for Explicit Resource Management in Channel-Based Concurrency

    Get PDF
    We define a pi-calculus variant with a costed semantics where channels are treated as resources that must explicitly be allocated before they are used and can be deallocated when no longer required. We use a substructural type system tracking permission transfer to construct coinductive proof techniques for comparing behaviour and resource usage efficiency of concurrent processes. We establish full abstraction results between our coinductive definitions and a contextual behavioural preorder describing a notion of process efficiency w.r.t. its management of resources. We also justify these definitions and respective proof techniques through numerous examples and a case study comparing two concurrent implementations of an extensible buffer.Comment: 51 pages, 7 figure

    Automated Amortised Analysis

    Get PDF
    Steffen Jost researched a novel static program analysis that automatically infers formally guaranteed upper bounds on the use of compositional quantitative resources. The technique is based on the manual amortised complexity analysis. Inference is achieved through a type system annotated with linear constraints. Any solution to the collected constraints yields the coefficients of a formula, that expresses an upper bound on the resource consumption of a program through the sizes of its various inputs. The main result is the formal soundness proof of the proposed analysis for a functional language. The strictly evaluated language features higher-order types, full mutual recursion, nested data types, suspension of evaluation, and can deal with aliased data. The presentation focuses on heap space bounds. Extensions allowing the inference of bounds on stack space usage and worst-case execution time are demonstrated for several realistic program examples. These bounds were inferred by the created generic implementation of the technique. The implementation is highly efficient, and solves even large examples within seconds.Steffen Jost stellt eine neuartige statische Programmanalyse vor, welche vollautomatisch Schranken an den Verbrauch quantitativer Ressourcen berechnet. Die Grundidee basiert auf der Technik der Amortisierten Komplexitätsanalyse, deren nicht-triviale Automatisierung durch ein erweitertes Typsystem erreicht wird. Das Typsystem berechnet als Nebenprodukt ein lineares Gleichungssystem, dessen Lösungen Koeffizienten für lineare Formeln liefern. Diese Formeln stellen garantierte obere Schranken an den Speicher- oder Zeitverbrauch des analysierten Programms dar, in Abhängigkeit von den verschiedenen Eingabegrößen des Programms. Die Relevanz der einzelnen Eingabegrößen auf den Ressourcenverbrauch wird so deutlich beziffert. Die formale Korrektheit der Analyse wird für eine funktionale Programmiersprache bewiesen. Die strikte Sprache erlaubt: Typen höherer Ordnung, volle Rekursion, verschachtelte Datentypen, explizites Aufschieben der Auswertung und Aliasing. Die formale Beschreibung der Analyse befasst sich primär mit dem Verbrauch von dynamischen Speicherplatz. Für eine Reihe von realistischen Programmbeispielen wird demonstriert, dass die angefertigte generische Implementation auch gute Schranken an den Verbrauch von Stapelspeicher und der maximalen Ausführungszeit ermitteln kann. Die Analyse ist sehr effizient implementierbar, und behandelt auch größere Beispielprogramme vollständig in wenigen Sekunden

    Resource flow simulation model

    Get PDF

    Runtime Enforcement of Memory Safety for the C Programming Language

    Get PDF
    Memory access violations are a leading source of unreliability in C programs. Although the low-level features of the C programming language, like unchecked pointer arithmetic and explicit memory management, make it a desirable language for many programming tasks, their use often results in hard-to-detect memory errors. As evidence of this problem, a variety of methods exist for retrofitting C with software checks to detect memory errors at runtime. However, these techniques generally suffer from one or more practical drawbacks that have thus far limited their adoption. These weaknesses include the inability to detect all spatial and temporal violations, the use of incompatible metadata, the need for manual code modifications, and the tremendous runtime cost of providing complete safety. This dissertation introduces MemSafe, a compiler analysis and transformation for ensuring the memory safety of C programs at runtime while avoiding the above drawbacks. MemSafe makes several novel contributions that improve upon previous work and lower the runtime cost of achieving memory safety. These include (1) a method for modeling temporal errors as spatial errors, (2) a hybrid metadata representation that combines the most salient features of both object- and pointer-based approaches, and (3) a data-flow representation that simplifies optimizations for removing unneeded checks and unused metadata. Experimental results indicate that MemSafe is capable of detecting memory safety violations in real-world programs with lower runtime overhead than previous methods. Results show that MemSafe detects all known memory errors in multiple versions of two large and widely-used open source applications as well as six programs from a benchmark suite specifically designed for the evaluation of error detection tools. MemSafe enforces complete safety with an average overhead of 88% on 30 widely-used performance evaluation benchmarks. In comparison with previous work, MemSafe's average runtime overhead for one common benchmark suite (29%) is a fraction of that associated with the previous technique (133%) that, until now, had the lowest overhead among all existing complete and automatic methods that are capable of detecting both spatial and temporal violations

    Parametric Inference of Memory Requirements for Garbage Collected Languages

    Get PDF
    The accurate prediction of program's memory requirements is a critical component in software development. Existing heap space analyses either do not take deallocation into account or adopt specific models of garbage collectors which do not necessarily correspond to the actual memory usage. We present a novel approach to inferring upper bounds on memory requirements of Java-like programs which is parametric on the notion of object lifetime, i.e., on when objects become collectible. If objects lifetimes are inferred by a reachability analysis, then our analysis infers accurate upper bounds on the memory consumption for a reachability-based garbage collector. Interestingly, if objects lifetimes are inferred by a heap liveness analysis, then we approximate the program minimal memory requirement, i.e., the peak memory usage when using an optimal garbage collector which frees objects as soon as they become dead. The key idea is to integrate information on objects lifetimes into the process of generating the recurrence equations which capture the memory usage at the different program states. If the heap size limit is set to the memory requirement inferred by our analysis, it is ensured that execution will not exceed the memory limit with the only assumption that garbage collection works when the limit is reached. Experiments on Java bytecode programs provide evidence of the feasibility and accuracy of our analysis

    Runtime Automated Detection of Out of Process Resource Management in the X Windowing System

    Get PDF
    Software applications typically allocate and deallocate resources during their lifetime. Resources can be categorized into two broad groups, in-process and out-of-process resources where in-process resources are local resources directly managed by a client, while out-of-process resources are remotely managed by a client which instructs a server to allocate and deallocate the resource on its behalf. Out-of-process resources do not reside in a clients address space which poses an extra layer of complexity in attempting to debug their misuse. This thesis presents an automatic run-time solution to the problem of detecting and reporting source code locations of application client mismanagement of out-of-process resources for a specific case-study of the X Windowing System which lends itself to use in the wider general case

    A Survey on Cache Management Mechanisms for Real-Time Embedded Systems

    Get PDF
    © ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, {48, 2, (November 2015)} http://doi.acm.org/10.1145/2830555Multicore processors are being extensively used by real-time systems, mainly because of their demand for increased computing power. However, multicore processors have shared resources that affect the predictability of real-time systems, which is the key to correctly estimate the worst-case execution time of tasks. One of the main factors for unpredictability in a multicore processor is the cache memory hierarchy. Recently, many research works have proposed different techniques to deal with caches in multicore processors in the context of real-time systems. Nevertheless, a review and categorization of these techniques is still an open topic and would be very useful for the real-time community. In this article, we present a survey of cache management techniques for real-time embedded systems, from the first studies of the field in 1990 up to the latest research published in 2014. We categorize the main research works and provide a detailed comparison in terms of similarities and differences. We also identify key challenges and discuss future research directions.King Saud University NSER

    Efficient memory safety for TinyOS

    Get PDF
    ManuscriptReliable sensor network software is difficult to create: applications are concurrent and distributed, hardware-based memory protection is unavailable, and severe resource constraints necessitate the use of unsafe, low-level languages. Our work improves this situation by providing efficient memory and type safety for TinyOS 2 applications running on the Mica2, MicaZ, and TelosB platforms. Safe execution ensures that array and pointer errors are caught before they can corrupt RAM. Our contributions include showing that aggressive optimizations can make safe execution practical in terms of resource usage; developing a technique for efficiently enforcing safety under interrupt-driven concurrency; extending the nesC language and compiler to support safety annotations; finding previously unknown bugs in TinyOS; and, finally, showing that safety can be exploited to increase the availability of sensor networks applications even when memory errors are left unfixed
    • …
    corecore