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Abstract

The accurate prediclion of program’s memory requirements is a
critical comnponent in software development. Existing heap space
analyses eilher do not take deallocation into account or adopt spe-
cific models of garbage collectors which do not necessarily come-
spond to the actual memory usage. We present a novel approach to
inferring upper bounds on mmemory requirements of Java-like pro-
graing which is parameiric on the notion of object lifetime, i.e., on
when objects become collectible. If objecls lifelimes are inferred
by a reachabiliry analysis, then our analysis infers accurale up-
per bounds on the memory consumption for a reachability-based
garbage colleclor. Interestingly, if objects lifetimes are inferred by
a heap liveness analysis, then we approximate the prograin mini-
mal memory requirement, i.e., the peak memory usage when using
an oplimal garbage collector which frees objecls as soon as they
become dead. The key idea is to integrate information on objects
lifetimes into the process of generating the recurrence equations
which capture Lhe memory usage at the different program states.
If the heap size limit is set to the memory requirement inferred by
our analysis, it is ensured that execution will not exceed the mem-
ory limit with the only assumption that garbage collection works
wlen the limit is reached. Experiments on Java bytecode programs
provide evidence of the feasibility and accuracy of our analysis,

Categories and Subject Descriptors F3.2 [Semantics of Pro-
gramming Languages]: Program Analysis: F2.0 [Analysis of Al-
gorvithins and Problem Complexiry]: General; D3.0 [Programming
Langtages): General

General Terms  Languages. Theory. Verification, Reliability

Keywords Live Heap Space Analysis. Peak Memory Consump-
lion, Low-level Languages, Java Bytecode, Garbage Collection

1. Introduction

Accuralely estimating the memaory requiverment of programs is cru-
cial in contexts in which memory reinains a scarce commodity and
also when a systein failure due to insufficient 1nenory might have
severe consequences. Due in part to the difficulty of predicting the
space usage of programs that use dynamic memory allocation, real-
lime and embedded software typically uses only statically allocated
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data, which is known to have disadvantages [22]. Existing heap
space analyses alm at predicling the mmeiwnory usage of programs
and can be classified into the tollowing categories:

{1} do not lake garbage collection (GC) into account (e.g.. [2, 7]).
(2} assune specific models of GC (e.g., scope-based GC [3. 6, 22]),
(3} are restricted to simple coinplexity bounds (e.g., linear [11]),

{4} are not fully autoinalic (e.g.. [16]).

EXAMPLE 1.1. Let us motivate our work on a contrived example
which is depicted in Fig. 1 (1o the left). Because it has simple {con-
siane) memory requirements, it is useful 1o describe innirively the
differences amony the different heap space analyses and, later, to
explain the main technical parts of the paper. In Fig. I (to the right)
we also provide several approximaiions of the memory requiremeni
of executing method my by using differert approaches, where the
notation s(X) means the memory required for an instance of class

A first safe approximaiion is io infer the to1al memory alocation
T {2, 7] which accumulates the sizes of all abjects created along
the execution. By asswning a specific behavior of GC, recent ap-
proaches try to approximate the peak awnonnt of reachable data on
the heap, i.e., dara 1o which some variable in the program environ-
meni peiris. Obviously, this approximaiion is tight and sound only
when executing the program tising the asstimed GC. In scope-based
GC, deallocation of unreachable objects takes place on method's
remm and only those objects creared during the method's execu-
tion can be freed. By asswmning this GC, {3, 6] 1ake advarsage of the
knowledge that at (B (i.e., wpon exit from 1) the object fo which
"o refers can be freed. ie., it does not escape from the method.
Hence, the upper bound 5 is obrained. The importane poing is thar
s{A) and s{B) are always accumulated, plus the largest of the con-
suntption of g (l.e., s(C) + s(E}) and the memory escaped front
= (i.e., s(E)) plus the continnation (i.e., s(DY)). The scope asstunp-
tion is motivared by the notion of stack reference liveness {21] in
Java-like languages, according to which some objects which the
local varigbles (and operand stack elements) poini to, become un-
reachable tipon exit front inethods, e, when the corresponding call
stack frames are removed.

A recognized difficulty of inferring the memory requirement of
aprogram is Lhat the behavior of GC is unpradictable, i.e.. an object
which becoines eligible for GC will usually be cleaned up eventu-
ally, but there iz no guarantee when (or even if) that will happen.
Therefore. making any assumption during analysis (e.g.. scope-
based) on when objecls are garbage collected might not correspond
o the actual ineinory usage and, even worse, might not be sound
it GC works less often. Different garbage colleclors use ditlerent
lechniques for deciding on: (1) wher GC is performed; and (2) whar
can be collecled, i.e.. the fiferime of objects, Instead of adopting a
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void my () { Ama(Aay{ int mz() {
A a=new AO;D C c=new C(); return this.data;
af=new B(:.(2» int i=a.f. mz}+c.ms{); h
a=mo(a),@D af =mull; 3
[} d=new D{); return new Edi); class E is supposed
tor extend A

—ouv -

s(A)+s{B)+s{C)+s(D)+=(E)

s{A)+s{B)+ max(s{(C)+s(E), s(E})+s(D))
max(s{A)+s(B)+s{C),s{A)+s(C)+s(E), s(E}+s(D))
max(s{A)+s{B)+s(C),s(E),s(D))

Figure 1. A Java Program and ils memory requirements: T=lotal-allocation; S=scope-based. R=reachability-based; L=liveness-based.

partlicular garbage collector, we present a novel approach to accu-
rately eslimating the memory requirements of object-oriented im-
perative programs which is parametric w.r.t. (2), i.e., when objects
are eligible for GC. and sound for the following scenarios of {1):

(1) GC collects objects as soon as they become eligible for collec-
lion or, at 1nost, before the next hieap allocation instruction.

(i1} The heap size limit has been fixed to (he obtained upper bound
and GC is activated when new memory is to be allocated and
(he limit is reached.

In any of the above scenarios, it is guaranleed that execotion will
not exceed the vpper bounds that we infer. While scenario (i} is
of theoretical interest, (ii) is practical and realistic, since the least
that one can expect from GC (i.e., the less resiriclive assumption) is
that it frees memory when no more memory 15 available. Similarly
to [6. 3, 22]. the basic lechniques we use are based on Lhe generation
of recurrence relations which are then solved inlo closed-form
upper bounds (i.e., expressions without recurrences). The main
challenge is to inlegrale into them objects lifetime information
where heap data might be garbage collected at any program stale,
This is non-trivial since we need o generate recurrence relations
which capture the memory requirements at a program point level,
rather than at a method level as all previous approaches do. As
our main contribntion. we propose a novel combination of the
information gathered by a previous analysis on ofjects liferime
logether with the generation of recurrence relations and the use
of the technique of partial evaluation which, as our experimental
results on Java bylecode programs show, allows ns to accurately
infer the memory requirements at the different program slates.

We develop two interesting instances of our method. In the first
inslance, objects litetimes are inferred by a reachability analysis
and without the restriction of being scope-based. Then, our method
is able to obtain the upper bound R in Fig 1. This is due to the fact
that the object to which “a.f" poinls becomes unreachable at pro-
grain point (3, the object to which “¢'* points becomes unreachable
upon exit from mg, and the object crealed immedialely before (I
becomes unreachable at @). We can observe that this information
is reflected in R by taking the maximum between: the consumption
up to the first allocation instruction in 1n-, the consumption up to
the end of mz taking into account that the object to which “a.f”
points becomes unreachable. then the consumption until the end of
1m; laking into account that both the object poinled by “a.f™ and
the object created imnmedialely before (T) becoine unreachable. As
another instance. we consider a garbage collector which reclaims
objects when they become dead (i.e, will not be nsed in the future),
Then, we obtain the upper bound L by laking advantage of the fact
that the object created iminediately before (I) and those to which
“a.f” and “¢” point are dead at program point (3, and that the ob-
ject created at the end of ms is dead at program point 3. This in-
formation is reflected in the elements of the 1nax similarly to what
we have seen for R. Nole that, in theory, L is indeed the minimal
memory requirement for executing the method. This paper makes
the following important contributions:

{1} Our work is the first one that can be used to model accuralely
and safely the actual memory usage in Java-like languages
undler only the assnmplion that GC will work before exceeding
the memory limit.

{2} Also, if we base our analysis on the same liveness information.
our approach is the first one to obtain upper bounds on the
memory requireinent for:

(2.1} GC schemes (for Java-like languages) that take advanlage
of liveness information inferred at compile lime [21].

(2.2) Languages wilh region-based memory manageiment in
which programs are instrumented with explicit region
(dejallocation annolations by relying on a liveness analy-
sis [9].

(3) Provide information for understanding/debugging the memory
usage of programs. which can be a crilical resource during
software developiment.

2. Memory Requirements in Simple Imperative
Bytecode

To tormalize our analysis, we consider a simmple rile-based imper-
ative language (in the style of any of [2, 23, 18]}. It has been shown
that Java bytecode {and hence Java) can be compiled into Lhis inter-
mediate langnage [1]. Moreover, the lranslation preserves the heap
memory requirement of the original program. A rule-based pro-
gramt consists of a set of procedures and a set of classes. A proce-
dure p with % input argumenls £ = z1,...,% and ym onput ar-
gumenls § = 1, - . . , ¥m 15 defined by one or more grarded rules,
Rules adhere to (his graimnar:

rule = p(T). @) — .01, b
g = true | expy op exps | typelz, )
bu=w:=exp|z = new Ol |x = y.f | x.t:= ¥ | q({X}, {F})
exp = null | gexp
acxp = x | n | acxp—aexp | cexptocep | cexpracap | acxp/acxp
pr=> < lslz2 =14
where p({z}, {#)) is he head of the rule; g its guard. which spec-
ifies conditions for the rule o be applicable; &, ... b, the body

of the rule; » an inleger; » and y variables; f a field name, and
q({Z), (i) a procedure call. The language supports class defini-
lion and inclodes instructions for object creation. field manipu-
lation, and type comparison through (he instruction type(w, C),
which succeeds if the runtime class of © is exactly C. A class C
is a finile set of typed field names, where the type can be inleger or
a class name. The soperscript ¢ on a class ' is a unique identifier
which associales objects wilh the program points where they have
been crealed. The key features ot this language which facilitate the
formalization of the analysis are: (1) recursion is the only ileralive
mechanism, (2) guards are the only form of conditional, (3) there
is no operand stack and (<) objects can be regarded as records, and
the behavior induced by dynamic dispatch in the original bytecode
program is compiled into disparch blocks goarded by a type check.
The translation from (Java) bylecode to (he rule-based form is per-



formed in two steps [1]. First, a control flow graph is built, Second.
a procedure 15 defined for each basic block in the graph and the
operand stack is flattened by considering its eleinents as additional
local varables. For siinplicity, our language does not inclnde ad-
vanced features of Java such as exceptions. interfaces. slatic fields.
access conlrol and primitive types besides integers and references.
bnt our iinplementation deals with fnll (sequential) Java bylecode.

EXAMPLE 2.1. Fig. 2 shows the Java source (to the left) of another
examnple that we will use in the paper (besides the one in Fig. 1) be-
cause it has inreresting memory requirements, namely exponensial
and polynomial bounds. The source code is shown only for clar-
ity as the analyzer generates the rule-based representation (io the
right) from the corresponding bytecode only. The first o rules cor-
respond to methad v Each of them Is guarded by a corresponding
condition, resp. 1 > Q0 and n < 0. Variable names of the form s
indicate that they originate from stack positions. For instance, the
"new Tree' ” instruction creates an object of type Tree (the super-
scripr 1 is the unigque iderifier for this allocarion site) and assigns
the corresponding reference 10 variable sy (which corresponds 1o
pushing the reference on the stack in the original bytecode). Next,
methods g and £ are invoked. Then, the local variable 1 is decre-
mented by one and the result is assigned 10 83 and a recursive call
is done. A similar recursive invocation follows. In Java byiecode,
constructor methods are naned init. In both rudes, the retum value
is T which in the first takes the object reference and in the second
takes null. In the rule-based represemarion for f, the impornant ob-
servation is that loops are extracied in separate procedures which
are treated by the analysis as methods, namely, £ and £3 are inter-
wediate procedures which correspond, resp., to the while and for
loops in £. We refer io each procedire as a scope which can be a
methad definition or an insermediare block.

2.1 Semantics

The execution of bylecode in rule-based form is exactly like stan-
dard bylecode; a thorongh explanalion is ontside the scope of
this paper (see [20]). The operational semantics tor rule-based
bytecode is shown in Fig. 3. An acrivarion record is of the form
{p, bc, tu). where p is a procedure name. bc is a sequence of in-
structions and {v a varable mapping. Executions proceed between
configurations of he torin A; k, where A is a slack of aclivation
records and k is the keap, which is a parlial map from an infinite set
of memaory locations 10 objects. We use h(r) to denote (he object
referred to by the memory location » in i and A[r — o] o indicate
the result of npdating the heap # by making k(r) = o. An object ¢
is a pair consisting of the object class tag and a inapping froin field
names to valoes which is consistent with the type of the fields.

Intuitively, mle {1) accounts for all instructions in the byte-
code semanlics which perfonn arithinelic and assigninent opera-
tions. The evaluation eval{exp, tv) retnrns the evaluation of the
arithmetic or Boolean expression erp for the values of the come-
sponding variables from #v in the standard way. and for reference
variables, it retnrns the reference. Rules (2}, (3) and (4} deal with
objects. We assnine that newobject(C") creates a new object of
class C and initializes its fields o either O or null, depending on
their types. Rule (5} (resp., (6)) comesponds to calling {resp., re-
turning from) a procedure, The notation p[i, &) records the associ-
ation between the fonnal and actnal return variables. It is assuined
that newenv creates a new 1napping of local variables for the corre-
sponding method. where each variable is initialized as newobject
does.

A complete execntion starts froin an initia! configuration of the
torm {1, p({F},{g}), tv}: h and ends in a final configuration of the
form {L, ¢, tv"}; h" where tv and h are initialized to snilable initial
valoes. f+" and k" include the final valoes, and L is a special symbol

indicating an initial slate. Complele executions can be regarded as
traces Sy~ S~ - -~ 8y, denoted Sp~" Sy, . where 5, is a final
configuration. Infinite traces correspond to non-lerminaling execu-
tions. Traces that correspond to complete or infinile execntions are
referred to as complete traces.

2.2 The Notion of Memory Requirement

We use s(C) to denole the amnonnt of ieinory required to hold an
instance object of class C, s(«) denotes the anount of 1memory
occupied by an object o. and s{k) denotes the amount of memory
oceupied by all objects in the heap b, namely &, cgomims(R{r)).
Since in the semanlics of Fig. 3, there is no deallocation, given a
finile complele trace t = Sy~" .5y, its total memory allocalion is
defined as total(t) = s(hy) — s{hy). If the derivalion is infinite.
then total{t) = max{{s(h.) | i = A.; b € £}) = s(ha).

Langnages with antoinatic ineinory 1nanagement aiin at anto-
maltically reclaiining mmeinory (freeing it) when its content can no
longer afTect fnture compulations. Theretore, in the presence of any
GC, the size of the heap might also decrease. Hence. the mem-
ory requirement of an execuotion is defined as the maximnm size
of all intermediale heaps. More forinally, given a complele trace ¢,
and assnming that the initial heap hn contains initial data that will
not be deallocated during the execution. the memory requiremeni
{or peak memory vsage) of ¢ in the presence of GC is defined as
peak(t) = max({s(h} | Sy = At by € t}} — s(ho). This is the
notion that our analysis aiins at approximating.

3. Parametric Inference of Memory
Requirements

In practice. when execuling a program, there is 4 maximum heap
size linit, and when it is exceeded the program terminales in an
out of heap memory error state. Bnilding over previous work on
heap space analysis [2. 3], we present a novel approach to inferming
accurate memory requirements which can be used in combination
with reachability-based or liveness-based memory inanagers. From
a practical point of view, owr analysis resnlts are sound under only
the assumption that GC will reclaim memory if we are abont o ex-
ceed the heap size limit and new memory has to be allocated. This
is o say that, when execnting the program by fixing the inferred
1melnory reqnireinent as heap size limit, it is ensnred that the pro-
gram will not run into an euz of heap memory state.! The analysis
consists of four steps which will be described in the following four
seclions:

1. Generalion of upper bounds on the tolal memory consump-
tion ([2, 4]).

2. Inference of information on lifetiine of objects.
3. Generalion of 1nemory requirement recurrence relations.

4. A parlial-evalvation based transformation of the recurrence
equations.

3.1 Total Memory Allocation Upper Bounds

Any heap space analysis aims at approximating the memory nsage
of the program as a funclion of the input darg sizes. As customary.
the size of dala is delermined by its variable type [1]: the size of
an inleger variable iz its value; the size of an array is its length;
and the size of a reference variable is Lhe length of Lhe longest path
that can be Lraversed through the comesponding object {e.g., length
of a list, depth of a tree, etc.). We nse the original variable naines
{possible priined) to refer Lo the corresponding size variables; but
we write Lhe size in &alic. e.g., if variable 1 in f; is a reference t a

1In Java, the option “~Xmxn” can be used to specify the memory limit.



class Test {
statie Tree miint n) {
if { n>0) returm new Treel(f(n,g(n)), min-1},min-1)}
else returm noll;

}

static List g{int n) {
if {n <= 0)reiorn null
else returm new List?( n.g{n-13}:

}

statie int f(int n, List 1) {
int 1=0;

while (1 1= null} {
I += (new Long3(].data)).intValue();
I =Llnext;

} # List? is not live

for {int i=n; i>>0; i--)
r *= (new Integer(i)intValue();
relurmnr;
}
}

m({n}, {r}} —

n>0@

80 .= new Tree!, &
g({n}, {s1}). ©

f({n, 1), {s13),

spi=n— 1,

m{{sz}, {s2}),
sz3.=n-—1,

m{{ss}, {83},

inites({sn, 51,82, 83}, {}},
I = &8q.

m({n}, {r}} —

n < 0,
r:= null.

(11 I <r>) -
fl (l 1) (l r},

i.=n,
fo({i, 1), {i,r}).

f1(<{s 0, (L)) —

# null, H
8y .= new Long?,
s; = Ldata,

initLong {{S0.81), {}}.
intValuepang ({50}, {so}),
r.=r + sg,
1 := Lnext, D
fi({lry, {1,1)).

£y, (L)) —

1 = null.
B (), (i.n)) —
i>0,Q

sg = new Integer?,
initll\t((sﬂs 1}! O)s
int Valuern: ({80}, {sg}),
T =T *8g,
i=1—1,&
f2({i, r}, (i, r)

({1, (1)) —

i<o0.

Figure 2, Java code of running example and rule-based representalion of m and £

b=ux.= erp, v = evallexp, tv)

(P, bebe, tw) AR~ (p, be, tofe = v} AR
o=newobject{C1),

r€dom(h)

(1)

2) b=z :=new ',
(3) b=x=uy.f,
{4)

{p, b-be, to}- A; Ao {p, be, tv[z — 7} A R[r — ¢
te{y) # null, o= k{to(y))
{p.bbc,toy A b~ {p, be, tujz— o f]} A; R
b=ux.f =y tv{z) #oull, o=tz
{p, bobe, toy- Ak~ {p, be, to)-A; Ro. f — to(y)]

= q((8), (5)). there is a program rule g({z'), (§')):=
) such that tv'=newenv{q), ¥i.te'(x])

o

!

g.bre by
= te(x;), eval{g, '} = true

{p, bobe, toy- A b~ (g, b1 -

b, ey (p 7] be tuy- AR

(6)

{q, <.ty (p[g. 47 ], be, &'y A; R~ (p, be, 0 [ — to{y )]3-A; 1

Figure 3. Operational semantics of bytecode programs in rule-based form

list, then ! represents its length. Note that the size measure of data
structures is unrelated to function s{C'} as defined in the previous
seclion to 1ueasure the actual space occupancy. The size 1ueasure
is mainly used for estimaling Lthe number of iterations of recursive
procedures. When we need (o compute the sizes ¥ of a tople of
variables %, we use the nolation ¥ = «(%, tv, i), which rueans that
the integer value v; is the size of the variable x; in the context of the
variables table v and the heap h. For inslance, we need to access
Lhe heap h where the list ] is allocaled to compute its length v. If
X 18 an integer variable, then ils size (value) is oblained from the
variable table tv.

Standard size analysis is used in order to obtain relations be-
tween the sizes of the program variables at different program
points [12]. For instance, associaled with Lhe recursive rile fi.
we infer the size relation { > I’ which indicales that the length of 1
decreases when calling f; recursively where !’ refers to the size of
1 at the program point where f; is called recursively. We denole by
r the conjunclion of linear conslraints that describes the size rela-
lions between (he abslract variables ot a rule » and refer o [12, 1]
for more information. The rest of our analysis is paraletric w.r.t.
Lhe size relalions. which are an external component. and can also

admit vser-defined size relations as [14]. Given a program P and
the relations i for its rules, a recurrence relation (RR) systew for
otal memory allocation is generaled by applying the following
definition to all rules in P.

DERNITION 3.1 (lotal wwemory allocation equations [2]). Let  r

be a ride of the form p({X),{¥}) — g, by, ... by and . its corre-

sponding size reiarions Then, its tolal memory allocalion equalion

is defined as p(T) = IM(b }oipr where M(x 1= new C'} =
s(C"), M{qi({%i}, {v.) } = qa(E4); etherwise AM(bi) = 0.

Nole that each call in the rule q;{{Xi}, {¥i}} has a comesponding
abslract version ¢;(%;) where Z; are the size abstractions of X; at
the corresponding prograiu point. The output variables are ignored
in the RR as the cost is a tunclion of the input data sizes, but the
relation they impose on other variables is kept in .. The same
procedure name is used to define its associated cost relalion, but in
italic font. An important point is that the RR 1wust keep the order
of the corresponding size constants and the calls in (heir right hand
sidles (rhs) exactly as they appear in the role they are generated
from. This was not required by previons memory analyses [3, 2].



bnt it will be crncial when developing our analysis in order to make
RR capture the heap space usage at a program point level.

EXAMPLE 3.2. The 1o1al allocarion equations for the rules m and
fin Fig. 2 are:

m(n) =s(Trea')+g(n)+f(n, s, )+m(sz ) +m(iss)
{n>0,81=n,83=n—-1, 83=n—1}

m{n) =0 {n=0}

F, =il r) + fol2,1)  {r=0,i=n}

The first equation corresponds 1o the first rule of procednre m. Ir
states that the total nemory constunption when executing 1 with
an input value n is: the size of an object of type Tree®, plus the
consumnption of the corresponding calls 1o g, { and the recursive
calls to m. Note thar the ariached constrains describe the size
relations bemween the local varigbles and the input variable v The
total allocation for £ is the swn of total allocations of the loops T,
and f3. O

Once the RR are generated. a worst-case cost analyzer nses a solver
in order to oblain closed-form upper bounds. i.e., cost expressions
without recnrrences. Given a RR p(E). we denote by p*®(Z) its
npper bonnd. The upper bounds that [4] can infer froin the above
RR are cast expressions of the following form:

e = n|s(CYnat(l)| log(nat(1} 4 1)|e * eles + 1|2V
max{{e,... e

where n is an integer, ! is a linear expression and C is a class.
Function nat is defined as nat{v)= max{{v, 0}) to avoid negalive
valoes, A cost expression most evaluale to a non-negative valoe
for any input. The technical details of the process of obtaining a
cost expression from the RR are not explained in the paper as our
analysis does not require any modification to Lhis part. In what
follows. we rely on the RR solver of [4] to oblain upper bounds
for onr examples, sownelimes sinplified by removing constants to
facilitate nnderstanding.

EXAMPLE 3.3. The total memory wpper botnds obtained from the
RR of Ex. 3.2 are.

f“b(n, D=nat(!) + s{(Long®)+nat{n) + s{Integer?)
mHb(n) =(2"0 _ 1y (sf Treel)4nat{n) # (s( List?)+
s{ Long®)+s( Integer?)))

Inuirively, for method £, observe thar the first (resp. the second)
loop is execured nat(l) (resp. nat{n)) times and ar each irerarion
a Long® (resp. Inteper) object is allocared. For 1, we have an
exponential nuriber of recursive calls, at each one: an object Tree'
is allocated, g allocares nat(n) objects List® and f conritues
with irs alocarion. The inferred upper bounds capiwre exactly this
tniiition.

3.2 Inference of Objects Lifetime

A GC strategy classifies objects in the heap into two categories:
those which are collectible and those which are not. We mean by
applying a GC siraregy on a heap the process of removing all col-
lectible objects fromn such heap. Most types of garbage collectors
determine wnreachable objects as collectible, i.e., they eliminate
Lthose objects to which there is no variable in the program environ-
ment poinling direclly or indirecily. The more precise alternalive is
o rely on the notion of liveness. An object is said to be not live (or
dead) at some state if it is not nsed froin that point on doring the
execnlion. The static inference of both such collectible information
is undecidable and therefore it is nsnally approximated. A common
approach to approximate it is to provide information for each pro-
grain point on the types (i.e., the class name with allocation site)
of colleclible objects instead of on the actoal objects. This approx-
imalion is typically done w.r.t, an eniry procedure {(such as main in

Java). In order to define these nolions, we first make all program
points vnique, The k-th program role p({Z), (7)) — g,b%, . ,b%
has n+1 progran points. The first one, [k, 0], after the execulion
of the gnard ¢ and before the execntion of &; until [k, ] after the
execulion of by,.

DEFINITION 3.4 (collectible classes). Ler P be a program with
an eniry procedure p({T}, {if}), C' a tvpe, [k, 7] @ program poing,
and G a GC sirategy. We say thar C' is collectible at [k, ] w.rt.
G, If for any compleie 1race t whar siarts from an iniiial siare
So={L,p({E), {@}), tvo}; ho and any Sn:(pk,b? s he, tug A Ry,
int, applying G on h,, resulis in @ heap which does not have arny ob-
Jject of pe CF (Le. any object created at statement “new O ). The
set of all collecuible classes ar |k, jl wre. G is denoted C(G, [k, 5]).

The set of all collectible classes at a program point [k, j] wrt a
reachability-based GC strategy &r, called anreachable classes. is
denoted C{G,, [k, j])}. This set can be approxiinated using points-
o analysis [24]. For siinplicity, we assnme that off nureachable
objects are collected whenever &, is activated. In practice, this can
be adjusted to the actnal underlying GC strategy.

EXAMPLE 3.3, The following reachabiliry informarion is obrained
for the program points in Fig. 2. At @, ® @ and @, the set of
reachable classes is {Tre-.el}; and at ©, M. @. @, @, . and
& the ser of reachable classes is {Tree!, List?). Likewise, the
reachability informarion for the program poiis in Fig. 1 Is thar
at Iy the set of reachable classes is {A), ot @ is {A. B}, at
Q@ is {A,C}, and ot @ is {E}. The compleinentary sets are the
unreachable classes.

As another inslance. we consider a liveness-based GC slrategy.
This is interesting becanse it allows vs to approximate the mem-
ory regniremnent for region-based mmemory managers and garbage
collectors that 1nake nse of compile-tiine liveness intorination. Be-
sides. it allows oblaining upper-bounds on the (theorelical) mini-
mal memory requirement for execnting a program. which provides
nsefnl infonnation for understanding/debngging the ineinory usage
of programs. The set of all collectible classes at a prograin point
[k, 7] wr.t. aliveness-based GC slralegy Gy, called dead classes, is
denoted by C{Gy, [k, 7])). This set can be approximated by vsing
points- 1o analysis and backwards inference similar to [9].

EXAMPLE 3.6. The following liveness infornation is obtained for
the program poinis in Fig. 2. a1 @, ® @ .@. &, . and &
the set of live classes is {Tree'): and ar @, @, ® and O it is
{Treel, List?}. The important point is that, at (), objects of type
List? are saill Hive since their field data sall has to be accessed.
but at (® the access has already been performed and List® is not
live anymore. Similarly, the liveness infornarion olrained for the
program poinis in Fig. I is that ar (§) the set of live classes is {A}
and ot @ is {A, B}, and ai 3 and @ is 0. The complementary sets
Jorm the dead classes.

Nole that nsnally conlext-insensitive points-to analysis is enough in
order to precisely approximate unreachable and dead classes sels.
However, when advanced object orientled patlerns are used, snch as
factory, conlext-sensitive points-1o analysis 1night be required.

3.3 Parametric Recurrence Relations

Suppose that v, is the actnal memory nsage at soine program point,
and that ng is the amount of memory that corresponds o objects
hat can be freed by the garbage collector at that point, Then.
obvionsly 11 — 4 is the cnrrent memory nsage after freeing the
memnory that comresponds to those collectible objects. In order to
obtain an vpper bound for ny — ng, one can oblain an upper bound
for r1 and alower bound for n3. In our context. we have a symbolic



upper bound ¢ for #21. but the information about collectible classes
does not provide any lower bound on nz. since it does not include
information on how 1nany objects of each type we have at that
prograin point. But, since the collectible classes sets in Sec. 3.2,
provide the information that a/f instances of specific classes at that
program point can be freed, and since ; 15 a symbolic upper bound.
we can obtain a sound upper bound for 121 — 2 by replacing in e,
all occurrences of s(C) by O, for each C (hat is in the coresponding
set of colleclible classes. By relying on this basic idea. we will
estimale the memory requirement at each program point and then
choose the inaximum anong (hein.

In what follows, given a cost expression e=e; + ... + ey, We
denote by efe; — f] the replacement of the sub-expression e; by

DEFINITION 3.7 (total memory). Given an expression ¢ = e1 +

-+ ey, where each e, is either of the form s(C') or a call ¢(F).
we define its total inentory, denoted total(e), to the cost expression
obtained as ele; — ¢**(&)), for each ¢; which is a call to a
procedure of the fornt g(T).

EXAMPLE 3.8. Assume that m3® = s{C) + s(E). Given the ex-
pression e = A) + 3{B) + mz + (D), we have total(c) =
s(A) + s(B) —|— s(C) + s(E) + s(D).

The interest of having the total memory is Lhat we can approximate
the aciive memory (i.e.. the memory that cannot be collected by the
GC) at a given prograin point froin it as follows.

DEFINITION 3.9 (active memory). Given an expression ¢, we de-
fine the active memory af a progrant point [k, j] w.rt. o GC strai-
egy G, denoted Ale, |k, j]. G}, as the cost expression obtained as
total(e)[s(CY) — O] for all C* € C(G, [k, 7]).

EXAMPLE 3.10. From the expression ¢ in Ex. 3.8, the reachability
infornation of Ex. 3.5, and the liveness information of Ex. 3.0, for
the program point & in Fig. 1, we obtain Ale,®,G,) = s(E) and
Ale, @, G) = 0.

The main idea behind ouwr memory requirements analysis is to
produce disjunctive equations which capture the active memory
at the program poinls where the memory usage can increase, ie..
at the memnory allocation instructions. Since the RR generated in
Def. 3.1 allow us to identify exactly these points by means of
their associated size constants. we generate the parametric memory
requireinents equations froin them.’

DEFINITION 3.11 {memory requirements equations). Given a to-
tal memory allocation equation “p(T) = e + - + €5, " and
a GC strategy G, rhe corresponding 1Demory requirement equa-
lion is defined as: "p(E) = max(fi,. .., fa)s ", such that
fi=Aler + -+ e, [k 5,6 +é whenfl [k, 7] is the progran
point thot corresponds o e; and 3{C') = s(C').

An imporant point in the above definition is that, when colnputing
Lhe aclive memory of €1 + - - - 4 e;_1. procedure calls are replaced
by their total memory upper bounds and hence the result is a
symbolic cost expression. In contrast, we have that ¢;, when e;
is a call, will be defined by corresponding 1nemory requirements
equations when applying Def. 3.11 to the equalions defining «;.
When e; is a conslant, function & is just s. As mentioned in Sec. 3.1.
it 1s crucial for the aboye definition to 1naintain the order {and
prograin point infonnation) in the expressions of the rhs of (he otal
allocation equalions in order to be able to apply the program point
collectible ¢lasses information into them.

* In previous work [3, 2] the equations are generated from the program rules
instead,

EXAMPLE 3.12. The ioral memaory equations for the methods in
Fig. 1 are (for simpliciry we ignore g since it does noi qffect the
inentory consumption )

mi=s{A) +s(B) + 1z + s(D)
ma=s(C} + s(E)

According to Def. 3.11, the following inemmory requirerients equa-
tions are obtained for a generic GC strategy G

ri=max(s(A),

As(A), D, G) + 5(B),

A(s(A) +8(B), @,G) + mha,

A(s(A) +8(B) + m3°, @, 6) +5s(D))
rig=max(s(C), A(s(C), @.G) + s(E))

The disjunctive information is handled in the solver by replacing
the nax operator by ron-deierntinistic equations and finding on
upper bound using {4]. Below, we show to the left (resp. right) the
non-determinisiic equations for a reachabiliry-based sirategy be-
fore (resp. after) the elimination of the wnreachable classes com-
puied in Ex. 3.5. The notation (€% indicates setting s(C) to zerm
once collectible classes are eliminared:

ﬁ?.IZS(A)

ml=A(s(A), ®, G-} +s(B} = s{A)+s(B)

rn=A(s{A)+s(B), @, Gr)+riza = s{A)+s(B)+1i4

my=A(s(A)+s(B)+ms”, @, G, ) +s(D)= s+ S
s(E)+s(D)

rie=s{C)

ra=A(s(C), 3, G )+s(E) = s{C)+s(E)

The upper botnds obtained from these eguations are

et = s(C) + S(E)

m‘l‘b = s{E) + max(s{A) +s(B) + s{C},s(D})
This upper botnd inproves over the scope-bused upper bound S in
Fiy. 1 but we still have not succeeded in inferring R. This is because
we need the parrial evaluarion rransformarion explained in the nexs
SECHion.

As another instance, the equations for a liveness-based strategy

Gr (Le., wrt the dead classes of Ex. 3.6) differ from the above ones
only in the fourth and sixth equarions which are as follows:

i =A((A)+s(B)+ms®, @, G)+s(D)= stAHs(BHs{C

+&€E}+€(D)
ma=A(s(C), @, G1)+s(E) = steHts(E

The upper bourds obiained from these equations are

s =max(s(C),s(E))

m¥=max(s{A)} + s(B) + max(s(C), s(E)},s(D))

Again, the partial evaluarion transformarion is needed ro obiain
L of Fig. 1. As mentioned in Sec. 1, liveness-based upper bounds
safely and accurately describe the peak memory usage for a men-
ory manager based on liveness. For example, this is the case of
region-based manager, for the program in Fig. 2 if objecis of the
same type are allocaied in the same region, and for the progrant in
Fig. 1 if A B and C are allocated in one region which is deallo-
caied ar program poine 3.

THEOREM 3.13 (soundness). Let P be a program, G be the GC
sirategy, DU(X), {¥)) an eniry procedure, and $**(Z) an upper
bound for the corresponding memory requirement equations gen-
erated in Def. 3.11. Asstoning that we stari the execution from an
initial state Sy = {L,p{{X}, (F)), tva); ho then, for any complete
trace t, it holds *°(T) > peak(t) where T = a(%, tvo, ho) if one
of the conditions hold:

{8) G is applicd as soon as ebjecis become collecrible:



{ii) the heap size is fived 10 p“b( ) and G is applied when we reach
this limir.

Informally. the soundness theorem ensures that our analysis cor-
reclly approximnates the peak of a procedure’s execution for any
GC scheine & in the two scenarios explained in Sec. 1.

3.4 A Partial Evaluation Transformation of Recurrence
Relations

The technigne in Sec. 3.3 oblains precise npper bonnds when ob-
jecls become collectible in Lhe same rule in which they have been
created. However, if an object becomes collectible in another rule
{e.g.., of a called wnethod), the effect of reinoving it inight be de-
layed until it becoine visible in (he sane rule, which night result
in a loss of precision. This happens in the program of Fig. 1. the
object to which Lhe variable **a™ refers becomes dead in mgz at pro-
grain point (B, and the object to which “a.f* refers becoines both
dead and unreachable at program point (3. However, (he egnations
that we generate for my in Ex. 3.12 (both for G; and G,) do not
lake advantage of this informalion, but rather from the informa-
ion that such objects are dead and unreachable at (&, i.e.. only
npon exit from my. This prevents us froin obtaining the precise np-
per bounds R and L in Fig. 1. The well-known technique of partial
evalualion [17] (PE for short) gives us a leeway. PE is an automatic
prograin transformation technique whose goal is to specialize pro-
graing by propagaling static information by means of tnfolding. In
our context. the notion of unfolding comesponds to the intuition of
replacing a call to a relation by the definition of the correspond-
ing relation, and therefore 1nerging the comesponding rules into the
same equation and making more prograin points visible.

EXAMPLE 3.14. Consider the total inemory equations of Ex. 3.12.
Unfolding the call to ma into its calling context resulis in the
Jollowing equarion:

mi = s(A) + Ds(B) + @s(C) + s(E) + @s(D)

From i1, by applying Def. 3.11, we obiain the following equarion for
Gy which is clearfy more accurate than the one we have obtained
in Ex. 3.12:

i =max(s{A),
s (s{A), @, Gr) +s(B),
(s(A) +s(B),@.G,) +s(C),
(s(A} +s(B) +5(C), 3. Gr) +s(E),
(s{A) +s(B) +s(C) + s(E), @, G» )+s(D }
—max(s A)+€(B)+€ ), S(A)+€((J)+ s(E),s(E)+s(D))

Solving this equation results in the optimal upper bound R. The
key poing is 1o incorporaie the reachability information ar program
poins 3y in the equation of my. We could not do ir in Ex. 3.12 since
it was in a different rule. Similarly, for Gy we get an equation which
has an upper bound that cotncides with the upper bownd | of Fig. 1.

The nnfolding process could be defined on the programmming lan-
guage, however, defining it on the RR has the main advantage of
being much simpler. This is because RR are made up only of con-
stants s{C). calls to other equations and linear constraints. This
kind of untolding is basically the same as that of clauses in con-
straint logic programining [13] and that of the npper bound solver
of [4].

DEFINITION 3.15 (unfolding step). Ler E be the recurrence equa-
don “plZ)=b+-  +bh_1+ q(ii‘g') + b'§+1 +- -+ b,;,(p”, and
E' a renamed apart equation q(y) =14 -+ ém. ¢ defining
g such that var Q(E) Mvars(B’) = . Then the .-mfo!dmg of B
wet. ¢(Z) and B is “p(E) =b+ - +bhicitea 4+ -t om+
bivit b, e A AT =g}

The unfolding step basically generates a new equation by: subslitut-
ing the (renamed apart} definition of ¢ in its calling site, joining the
constraints of both g and ¢ (2/+2"), and nnifying the variables of the
caller and (he variables of the renamed apart definition ({Z; = §}).
When the call we want to unfold is defined by several equations.
the above operalion is repeated for each of them possibly generat-
ing several equations. When * A @ A {Z; = ¥} is nnsatisfiable,
no eqnation is generated since this does not correspond to a valid
execulion.

Performing an unfolding slep solves the problem when the
object is crealed in a procedure |» and becomes collectible in the
nnfolded procedure g which is called from p. However, (here are
scenarios where more sleps are required. For example. an object
might become collectible not during an immediate call but rather in
a lransitive one. Even more, an object can be crealed and become
collectible in procednres that do not have a caller/callee relation.
In general, unfolding steps should be applied repelitively until the
program points that comrespond to the creation and collection of
an object are as close as possible in he equations. This process in
the presence of recnrsive relations (coming tromn loops) might be
non-terminating. Fortunately. the problem has been well studied in
the PE field and we can adopt any terminating stralegy [19]. For
instance, in [4], the strategy is to leave one relation per recursive
strongly connected component (SCC) and unfold the reinaining
ones. In order to take more advantage of collectible classes. it is
even possible to unfold a recursive SCC into other SCCs, which
corresponds to loop nnrolling. In PE lerminology, a binding-time
annotation (BTA) is a set of predicates which cannot be nnfolded,
either becanse it conld endanger tennination or because it wonld
not be profitable (e.g., it would not make the points of interest
closer in he rules), Our definition of partially evaluated equalions
can be nsed with any BTA which ensures tennination.

DEFINITION 3.16 (partially evalualed RR). Given a ser of RRs
and a BTA, the partially evalualed RRs are obrained by irerarively
unfolding (Def. 3.15) all calls in the rhs of the equations which do
not belong to BTA w.rt. its defining equations.

Once the RR have been partially evalualed, we apply Def. 3.11 to
thein in order o generale the corresponding memory requirement
equations.

EXAMPLE 3.17. For the simple example of Fig. I, if the BTA
includes only my, we ebiain the RR in Ex. 3.14 and the oprimal
R and L upper bounds of Fig. 1.

THEOREM 3.18 (soundness). Lez P be a program, G the used GC
technique, p{{%), (F}) an entry procedure, and p**(E) an upper
bound for the corresponding ineinory requireinent equations gen-
erated in Def. 3.11 qfter PE, Assuming thar we siart the execurion
Sront an initidl siare Sy = (L, p{{X}, {F}). tvo); ho then, for any
complete trace t, it holds p*° () > peak(t) under the same condi-
tions as in Theorem 3.13 where © = a(X, too, ho).

The key ditTerence with the PE of [4] is that we apply PE previ-
otisly to the generation of the 1neimnory regnireinent RR, while [4]
uses PE only to solve them. This is an essential difference since we
would not be able to oblain the propagation of colleclible informa-
tion that we need 1o obtain inemory requirements bounds by using
PE like [4]. As olher differences, we can apply PE with any tenni-
nating BTA while [4] requires checking further conditions on the
associaled graph.

3.5 Comparison to Previous Work

Our work iinproves over scope-based heap space analyses [3, 6] in
both its accuracy and ils applicability, Essenlially, since we over-
come the scope-based restriction. we are able to infer strictly more



precise npper bounds for reachability-based memory managers, as
the example below will show. Besides. since our equalions capture
the wneinory requirement at a prograin point level (rather than as a
method level as previons approaches do), we can apply it in com-
bination with a liveness-based memory manager which can deal-
locate objects at any program point, Altogether. our analysis inlro-
duces the novel applications pointed out in Sec. 1, which scope-
based analyses do not have. In order to clarify the technical difTer-
ences with Lhe analysis in [3], we apply the scope-based method
0 our running examples. We oblain Lhe following equation for the
prograin in Fig. 1:

1 = 8(A) +s(B) + max(rig, thz +s(D))

where 23 denotes the peak consumption of mg and 723 its escaped
wremory, 1.e., the menory crealed during the execntion of 1m- and
still reachable npon return from it. The idea is hence that when
there is a method call. the equation conlains a disjunctive max
between the peak consumption of such call (ie., 7irz) and the
memnory that escapes froin it plns the peak of the continuation
{i.e.. iy + s(D)). Apart from he ditterent way in generating the
equations. a fundamental dilference with our analysis is Lhat, by
relying on a escape analysis, only the objects created in the current
scope and in scopes reached transilively froin it can be deallocated.
This is clearly a subset of program point reachability or liveness
as we Jdo. As a consequence. the sizes of A and B are always
accumulated and. as they become dead (resp. unreachable) in mg
(resp. upon exit froin 104}, this mmeinory state is missed in the RR.
This leads to inprecision when inferring memory requirements and
illustrales why we need RR which capture the memory usage at a
program point level. as discussed in Sec. 1.

The optinization sketched in [3] o approximate the ideal GC
consists in splitting the rnles into smaller scopes in order to apply
GC more oflen. Unfortunately, it suffers from the same scope
limitation and hence it does not improve the upper bound neither.
Moreover, it is not straighlforward, and in 1nany cases it is even
unpossible, o generate these smaller scopes, since the scope might
begin in the middle of one rule and end in the middle of another
one. For example, in the program of Fig. 1, a new scope should be
created for the first two instructions of 1y and the part of mg up to
prograin point (3. Moreover, the partilion which is convenient for
one object might not be good for another one. In this example. the
accuracy gain is a constant factor. In more complex programs, the
gain can be much larger as the next example shows.

EXAMPLE 3.19. By applying Def. 3.11, the memory requirement
equation generated for m from the equation in Ex. 3.2, the total
up,E;er bounds of Ex. 3.3 and the reachable classes of Fx. 3.5 is:
m{n)

max(s{Tree!), s{Tree! ) +&(n), s{Tree! ) Fnat{n}+s{List? )+

(n 91 ﬂeel)W&&mﬁﬁ—ﬂ&&h—)ﬁ{-&eﬁg%—l—
(20}, 5(Trea')
W&Gﬂ*e&er—H
(2"“(32) 1)*9(’I‘ree )+ii(ss3) )

which can be solved (after solving f ) into the following closed forn
Jorthe case n>(;

4P () =(2" ") _ 1 )xs(Tree’ )+ max(s(Long®)
nat{n)s(List?)
The upper bound ofnained by [3] (applving the opuimizarion of
ideal GC) is:

(2rat(n) _ 1 y4(a(Treel) 4 nat{n)4s{List?))4+
nat{n)+ max(s(Long3}.s(Integert})

There are wo fundamenial differences.

s{Integer*) i+

{1} For execiving £, the approach described in this paper require
only max{s{(Long®}.s(Integer?}) of memory, while [3] re-
gtiires nat(n) times of max(s(Long®) s(Integer®)). This is
because in a scope-based approach the objects created in fi
{resp. f2) are nov garbage collecied wniil we exit from f, (resp.
f2), while they become dead/unreachable right afier calling
intValue;

(2) The memory required by g is accwntlated only once to the
memory requirement of m, while [3] requires space for allo-
caring g an exponeniial number of imes. This is because the
List? objects are creared in g and become unreachable (resp.
dead) in a different scope m (resp. £).

The above example not only shows the further accuracy of our
approach w.r.t. scope-based ones, but it also illusirates the power
of our method in the kind of npper bonnds we infer: we captore
exponenlial, logarithmic and polynomial memory bounds. This
improves over type-based memory usage analyses [16] which are
often restricted to linear upper bounds.

4. Experimental Evaluation

We have unplemented our technique within XYZ> which can be
tried out through its web interface at: XYZ* by selecting the cost
models for memory reguirement. Our reachability analysis is based
on he points-to analysis of [24], and the heap liveness analysis
is similar to the region-based liveness of [9]. The PE (ransforma-
lion leaves one relation per SCC as explained in Sec. 3.4. The ex-
periinental evalnation has been perforined on the JOlden bench-
mark suite [8] and on GCBench, a typical exanple froin the GC
community [5]. For each benchmark. we infer total allocation up-
per bounds Ur and (he peak heap usage using the cost models:
Us for scope-based GC, Ug for reachability-based GC, and U for
liveness-based GC. As regards the GCBench benclunark, its main
melhod consists of 4 parts Lhat create different dala structures, In
this case, Ut and Us are the sum of the sizes of these dala struc-
tores since they escape to the scope of the main and hence cannot
be collected until execntion finishes, while Ug and U_ are the max-
imum among their sizes. Besides. in the last part of the main. there
are 3 nested loops and. at each iteration of the inner one, a lree
is created and becomes dead and unreachable at the end of it. For
this part, Ut and Us require a quadratic number of trees while Ug
and U, require a single ree (the upper bounds are too large to be
shown),

As regands the JOlden benchinarks, they all create an initial
data strncture and then do some post-processing on it. Therefore,
the overall memory requirement is dominated by the size of the
initial data structure and hence Us, Ug and UL are almost the
same it we start the analysis from main. However, doring the post-
processing, there are sowne 1nethods in which temporary objects are
crealed and, for them, Us is significantly larger than Ug and UL.
Table 1 summarizes our experiments by focusing on these methods.
We substitute the symbolic expressions s{C:) by the number of
fields C has, and for arrays we consider their sizes, so that the
syslem can perform matheinatical simplifications. As theoretically
expected, in all examples Ur > Us > Ug > U Let us
explain intuilively where the gain in accuracy comes from. In
the first two methods, we found loops that create objects which
becoine dead at the end of each iteration, bnt we conld not infer
that all of them become unreachable at that point, therefore U, is
more precise than Ug. The hackGravity method ¢lones an object
of type MathVector and immediately in the next instrnction it
creales an object of type HG. Onr analysis accorately infers that

3 the systemi name is withheld
*the actoal link is withheld



[[Bench [ Ur | U [ Ur [CJ Re ]
mst MST.computeMST|[ 4#nat(A-1) | 4#nat(A-1) [4+2%nat(A-1}| 2 2
bh.Tree.vp 28*nat (A)+8 | 28*nat(A)+8 | 28+nat (A)+8 [30|[12+A4+24
bl.Body.hackGravity 21 21 21 15 12
bh.MathVector.toString i0 i0 10 4 2
em3d.BiGraph.toSiring | 4*nat(4-1)+2 [4*nat (4-1)+2 4 4 4
voronoi.Vertex.print  [[4#2°**3=1 _ Slosnat (A-1)+2 2 2 2
bisort. Value.inOrder  [[4#2°*%=1 — 3[2snat (a-1)+2 2 2 2

Table 1. Total, Scope, Reachability. Liveness Upper Bounds by COSTA on the JOlden

MathVector becomes dead before creating HG. Indeed. this has
spotted a possible bug: the cloned MathVector object is not used
bnot rather the original one. Again, the objects are still reachable
and hence UL > Ugr. In (he last three methods the gain originates
from the creation and manipuolation of Strings. Usnally. several
StringBuffer objects are crealed to hold intermediate strings and
become dead and unreachable as soon as data is printed. When snch
a slateinent occurs inside a linear loop like in em3d. toString,
we are able to infer a constant number of StringBuffer objects.
while the scope-based peak analysis oblains one proportional to the
number of ilerations. Even 1nore, in the last two melhods, the otal
consnmption is exponenlial due to two recursive calls. The scope-
based peak is linear since the objects created during Lhe execution
do not escape from Lhe method and hence can be garbage collected
before the second call. Imporiantly, we uinprove this npper bonnd
o a constant in the case of Ug and Uy.

Finally. in the last colomn, we aim at evaloating the precision
of our analysis for Java programs by comparing our npper bounds
with the inemory consnmption of real execntions. For (his aim, we
have implemented a JVMTI agent® which. besides tracking object
allocations and deallocations. explicilly invokes the (reachability-
based} JVM garbage colleclor betore any object or array creation.
Colnmn Rg shows (e obtained consmnplions, nsing the saine 1nea-
sure as before (i.e. nuinber of fields and size of arrays) which cor-
respond o the real minimal memory requirements. The sizes of the
corresponding input are not relevant when the actnal memory con-
sumption is constant, which is the case of all benchmarks except
bh.Tres. vp. For this one, we have run the prograin with a set of
different inputs. and from the obtained results we have derived the
cost expression 12«4+24, which characlerizes the actual consump-
tion for all values of A greater than 1. It can be observed (hat Ug is
safe in all cases and very close 1o R in 1nost of thein, except for the
first two benchmarks in which Lhe reachability analysis loses preci-
sion, mainly due to Lhe context-insensitive nature of the underlying
points- 1o analysis. Note that, in spite of the fact that Uy is based on
liveness and hence 1nore precise, it is larger than Rr in soine cases.
This is becanse of the loss of precision in the underlying (slatic)
liveness analysis. Allin all, our experiments reveal that the mem-
ory requirements inferred by our analysis are accurate and close to
the actual consnmption.

5. Conclusions

Predicting the memory requirements of a program’s execolion is a
critical component in software developinent. The 1neinory reqnire-
ments typically inclnde both the heap and the frames stack nsage.
This paper focuses on Lhe heap space becanse estimating Lhe max-
imal height of the frames stack from our heap analysis is slraight-
forward, as it is done in [3]. Memory usage has been traditionally
measured nsing profiling which is often insufficient since only cer-
Lain inputs are profiled. Boilding over recent progress in heap space

5See http://java.sun.com/j2se/1.5.0/docs/guide/ jvmti/

analysis, our work presents a novel approach to inferring symbolic
bounds of the memory requirements for imperative object-oriented
langnages. [t improves over recent work in that it is not tied 10 a
particular GC 1nodel (nnlike [3, 6]). it computes accurate bonnds
for exponenlial, logarithmic. elc. complexities (unlike [6, 11]) and
it is fully automatic (unlike [16]). Other approaches to resource
nsage analysis are developed to measnre olher types of resonrces,
namely [14] predicts nnmber of instroctions, [1] is generic in the
definition of cost model but neither of them supports memory re-
quirements, since the underlying techniques are developed o mea-
snre accmnulative resources, while 1neinory nsage is a resonrce that
increases and decreases along the execntion. The problem is difTer-
ent from memory prediclion in functional langoages [22, 15] since.
due o the absence of mulable data structures, GC can be mod-
eled in a scoped-based fashion where the scopes are determined
by the corresponding fonclion definitions. While in imperative lan-
guages, objects can be collected outside the scope in which they
have been created, which makes (he static prediction more difficult,
Other work, snch as [10], provides a framework for checking that
the wneinory nsage conforms to user-snpplied specitications. User-
supplied specifications may be hard to provide and are likely to be
impmaclical for bylecode programs.
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