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Abstract 
The accurate prediction of program's memory requirements is a 
critical component in software development. Existing heap space 
analyses either do not take deallocation into account or adopt spe
cific models of garbage collectors which do not necessarily corre
spond to the actual memory usage. We present a novel approach to 
inferring upper bounds on memory requirements of Java-like pro
grams which is parametric on the notion of object lifetime, i.e., on 
when objects become collectible. If objects lifetimes are inferred 
by a reachability analysis, then our analysis infers accurate up
per bounds on the memory consumption for a reachability-based 
garbage collector. Interestingly, if objects lifetimes are inferred by 
a heap liveness analysis, then we approximate the program mini
mal memory requirement, i.e., the peak memory usage when using 
an optimal garbage collector which frees objects as soon as they 
become dead. The key idea is to integrate information on objects 
lifetimes into the process of generating the recurrence equations 
which capture the memory usage at the different program states. 
If the heap size limit is set to the memory requirement inferred by 
our analysis, it is ensured that execution will not exceed the mem
ory limit with the only assumption that garbage collection works 
when the limit is reached. Experiments on Java bytecode programs 
provide evidence of the feasibility and accuracy of our analysis. 

Categories and Subject Descriptors F3.2 [Semantics of Pro
gramming Languages]: Program Analysis; F2.0 [Analysis of Al
gorithms and Problem Complexity]: General; D3.0 [Programming 
Languages]: General 

General Terms Languages, Theory, Verification, Reliability 

Keywords Live Heap Space Analysis, Peak Memory Consump
tion, Low-level Languages, Java Bytecode, Garbage Collection 

1. Introduction 
Accurately estimating the memory requirement of programs is cru
cial in contexts in which memory remains a scarce commodity and 
also when a system failure due to insufficient memory might have 
severe consequences. Due in part to the difficulty of predicting the 
space usage of programs that use dynamic memory allocation, real
time and embedded software typically uses only statically allocated 

data, which is known to have disadvantages [22], Existing heap 
space analyses aim at predicting the memory usage of programs 
and can be classified into the following categories: 

(1) do not take garbage collection (GC) into account (e.g., [2, 7]), 

(2) assume specific models of GC (e.g., scope-based GC [3, 6, 22]), 

(3) are restricted to simple complexity bounds (e.g., linear [11]), 

(4) are not fully automatic (e.g., [16]). 

EXAMPLE 1.1. Let us motivate our work on a contrived example 
which is depicted in Fig. 1 (to the left). Because it has simple (con
stant) memory requirements, it is useful to describe intuitively the 
differences among the different heap space analyses and, later, to 
explain the main technical parts of the paper. In Fig. 1 (to the right) 
we also provide several approximations of the memory requirement 
of executing method mi by using different approaches, where the 
notation s(X) means the memory required for an instance of class 
X. 

A first safe approximation is to infer the total memory allocation 
T [2, 7] which accumulates the sizes of all objects created along 
the execution. By assuming a specific behavior of GC, recent ap
proaches try to approximate the peak amount of reachable data on 
the heap, i.e., data to which some variable in the program environ
ment points. Obviously, this approximation is tight and sound only 
when executing the program using the assumed GC. In scope-based 
GC, deallocation of unreachable objects takes place on method's 
return and only those objects created during the method's execu
tion can be freed. By assuming this GC, [3, 6] take advantage of the 
knowledge that at @ (i.e., upon exit from 1112) the object to which 
"c" refers can be freed, i.e., it does not escape from the method. 
Hence, the upper bound S is obtained. The important point is that 
s(A) and s(B) are always accumulated, plus the largest of the con
sumption of 1x12 (i.e., s(C) + s(E)j and the memory escaped from 
rri2 (i.e., s(E)jplus the continuation (i.e., s(D)j. The scope assump
tion is motivated by the notion of stack reference liveness [21] in 
Java-like languages, according to which some objects which the 
local variables (and operand stack elements) point to, become un
reachable upon exit from methods, i.e., when the corresponding call 
stack frames are removed. 

A recognized difficulty of inferring the memory requirement of 
a program is that the behavior of GC is unpredictable, i.e., an object 
which becomes eligible for GC will usually be cleaned up eventu
ally, but there is no guarantee when (or even if) that will happen. 
Therefore, making any assumption during analysis (e.g., scope-
based) on when objects are garbage collected might not correspond 
to the actual memory usage and, even worse, might not be sound 
if GC works less often. Different garbage collectors use different 
techniques for deciding on: (1) when GC is performed; and (2) what 
can be collected, i.e., the lifetime of objects. Instead of adopting a 
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void mi () { 
A a=new A();(T) 
a.f=new B();0 
a=m2(a);® 
D d=new D(); 

} 

A 1112 (A a) { 
C c=new C(); 
int i=a.f.m3()+c.m3(); 
a.f = null; (3) 
return new E(i); 

} 

int 1113 () { 
return this.data; 

} 

class E is supposed 
to extend A 

T = s(A)+s(B)+s(C)+s(D)+s(E) 
S = s(A)+s(B)+max(s(C)+s(E), s(E)+s(D)) 
R = max(s(A)+s(B)+s(C), s(A)+s(C)+s(E), s(E)+s(D)) 
L = max(s(A)+s(B)+s(C), s(E), s(D)) 

Figure 1. A Java Program and its memory requirements: T=total-allocation; S=scope-based; R=reachability-based; L=liveness-based. 

particular garbage collector, we present a novel approach to accu
rately estimating the memory requirements of object-oriented im
perative programs which is parametric w.r.t. (2), i.e., when objects 
are eligible for GC, and sound for the following scenarios of (1): 

(i) GC collects objects as soon as they become eligible for collec
tion or, at most, before the next heap allocation instruction. 

(ii) The heap size limit has been fixed to the obtained upper bound 
and GC is activated when new memory is to be allocated and 
the limit is reached. 

In any of the above scenarios, it is guaranteed that execution wi l l 
not exceed the upper bounds that we infer. While scenario (i) is 
of theoretical interest, (ii) is practical and realistic, since the least 
that one can expect from GC (i.e., the less restrictive assumption) is 
that it frees memory when no more memory is available. Similarly 
to [6, 3, 22], the basic techniques we use are based on the generation 
of recurrence relations which are then solved into closed-form 
upper bounds (i.e., expressions without recurrences). The main 
challenge is to integrate into them objects lifetime information 
where heap data might be garbage collected at any program state. 
This is non-trivial since we need to generate recurrence relations 
which capture the memory requirements at a program point level, 
rather than at a method level as all previous approaches do. As 
our main contribution, we propose a novel combination of the 
information gathered by a previous analysis on objects lifetime 
together with the generation of recurrence relations and the use 
of the technique of partial evaluation which, as our experimental 
results on Java bytecode programs show, allows us to accurately 
infer the memory requirements at the different program states. 

We develop two interesting instances of our method. In the first 
instance, objects lifetimes are inferred by a reachability analysis 
and without the restriction of being scope-based. Then, our method 
is able to obtain the upper bound R in Fig 1. This is due to the fact 
that the object to which “a. f” points becomes unreachable at pro
gram point (3), the object to which “c” points becomes unreachable 
upon exit from 1112, and the object created immediately before (1) 
becomes unreachable at (J). We can observe that this information 
is reflected in R by taking the maximum between: the consumption 
up to the first allocation instruction in 1112; the consumption up to 
the end of 1112 taking into account that the object to which “a. f” 
points becomes unreachable, then the consumption until the end of 
m i taking into account that both the object pointed by “a. f” and 
the object created immediately before ® become unreachable. As 
another instance, we consider a garbage collector which reclaims 
objects when they become dead (i.e, wi l l not be used in the future). 
Then, we obtain the upper bound L by taking advantage of the fact 
that the object created immediately before ® and those to which 
“a. f” and “c” point are dead at program point (3), and that the ob
ject created at the end of 1112 is dead at program point @. This in
formation is reflected in the elements of the max similarly to what 
we have seen for R. Note that, in theory, L is indeed the minimal 
memory requirement for executing the method. This paper makes 
the following important contributions: 

(1) Our work is the first one that can be used to model accurately 
and safely the actual memory usage in Java-like languages 
under only the assumption that GC wil l work before exceeding 
the memory limit. 

(2) Also, i f we base our analysis on the same liveness information, 
our approach is the first one to obtain upper bounds on the 
memory requirement for: 

(2.1) GC schemes (for Java-like languages) that take advantage 
of liveness information inferred at compile time [21]. 

(2.2) Languages with region-based memory management in 
which programs are instrumented with explicit region 
(de)allocation annotations by relying on a liveness analy
sis [9]. 

(3) Provide information for understanding/debugging the memory 
usage of programs, which can be a critical resource during 
software development. 

2. Memory Requirements in Simple Imperative 
Bytecode 

To formalize our analysis, we consider a simple rule-based imper
ative language (in the style of any of [2, 23, 18]). It has been shown 
that Java bytecode (and hence Java) can be compiled into this inter
mediate language [1]. Moreover, the translation preserves the heap 
memory requirement of the original program. A rule-based pro
gram consists of a set of procedures and a set of classes. A proce
dure p with k input arguments x = x\,..., Xk and m output ar
guments y = yi,..., ym is defined by one or more guarded rules. 
Rules adhere to this grammar: 

rule ::= p((x), (y)) <—g,bi,...,bn 

g ::= true \ exp^ op exp2 | type(a?, C) 
b ::= x := exp \ x := new C1 |x := y.f | x.f := y | q((x), (y)) 

exp ::= null | aexp 
aexp ::= x \ n \ aexp—aexp \ aexp-\-aexp \ aexp*aexp \ aexp/aexp 

op : := > I < I < I > I = I ^ 
where p({x), {y}) is the head of the rule; g its guard, which spec
ifies conditions for the rule to be applicable; bi,... ,b„ the body 
of the rule; n an integer; x and y variables; / a field name, and 
q({x), {y}) a procedure call. The language supports class defini
tion and includes instructions for object creation, field manipu
lation, and type comparison through the instruction type(ai,C), 
which succeeds i f the runtime class of x is exactly C. A class C 
is a finite set of typed field names, where the type can be integer or 
a class name. The superscript i on a class C is a unique identifier 
which associates objects with the program points where they have 
been created. The key features of this language which facilitate the 
formalization of the analysis are: (1) recursion is the only iterative 
mechanism, (2) guards are the only form of conditional, (3) there 
is no operand stack and (4) objects can be regarded as records, and 
the behavior induced by dynamic dispatch in the original bytecode 
program is compiled into dispatch blocks guarded by a type check. 
The translation from (Java) bytecode to the rule-based form is per-



formed in two steps [1]. First, a control flow graph is built. Second, 
a procedure is defined for each basic block in the graph and the 
operand stack is flattened by considering its elements as additional 
local variables. For simplicity, our language does not include ad
vanced features of Java such as exceptions, interfaces, static fields, 
access control and primitive types besides integers and references, 
but our implementation deals with full (sequential) Java bytecode. 

E X A M P L E 2.1. Fig. 2 shows the Java source (to the left) of another 
example that we will use in the paper (besides the one in Fig. 1) be
cause it has interesting memory requirements, namely exponential 
and polynomial bounds. The source code is shown only for clar
ity as the analyzer generates the rule-based representation (to the 
right) from the corresponding bytecode only. The first two rules cor
respond to method m. Each of them is guarded by a corresponding 
condition, resp. n > 0 and n < 0. Variable names of the form s¡ 
indicate that they originate from stack positions. For instance, the 
“new Tree ” instruction creates an object of type Tree (the super
script 1 is the unique identifier for this allocation site) and assigns 
the corresponding reference to variable so (which corresponds to 
pushing the reference on the stack in the original bytecode). Next, 
methods g and f are invoked. Then, the local variable n is decre
mented by one and the result is assigned to S2 and a recursive call 
is done. A similar recursive invocation follows. In Java bytecode, 
constructor methods are named init. In both rules, the return value 
is r which in the first takes the object reference and in the second 
takes null. In the rule-based representation for I, the important ob
servation is that loops are extracted in separate procedures which 
are treated by the analysis as methods, namely, f i and I2 are inter
mediate procedures which correspond, resp., to the while and for 
loops in f. We refer to each procedure as a scope which can be a 
method definition or an intermediate block. 

2.1 Semantics 

The execution of bytecode in rule-based form is exactly like stan
dard bytecode; a thorough explanation is outside the scope of 
this paper (see [20]). The operational semantics for rule-based 
bytecode is shown in Fig. 3. An activation record is of the form 
{p, be, tv), where p is a procedure name, be is a sequence of in
structions and tv a variable mapping. Executions proceed between 
configurations of the form A; h, where A is a stack of activation 
records and h is the heap, which is a partial map from an infinite set 
of memory locations to objects. We use h(r) to denote the object 
referred to by the memory location r in h and h[r 1—• o] to indicate 
the result of updating the heap h by making h(r) = o. An object o 
is a pair consisting of the object class tag and a mapping from field 
names to values which is consistent with the type of the fields. 

Intuitively, rule (1) accounts for all instructions in the byte
code semantics which perform arithmetic and assignment opera
tions. The evaluation eval(exp, tv) returns the evaluation of the 
arithmetic or Boolean expression exp for the values of the corre
sponding variables from tv in the standard way, and for reference 
variables, it returns the reference. Rules (2), (3) and (4) deal with 
objects. We assume that newobject(C1) creates a new object of 
class C and initializes its fields to either 0 or null, depending on 
their types. Rule (5) (resp., (6)) corresponds to calling (resp., re
turning from) a procedure. The notation p[y, y'] records the associ
ation between the formal and actual return variables. It is assumed 
that newenv creates a new mapping of local variables for the corre
sponding method, where each variable is initialized as newobject 
does. 

A complete execution starts from an initial configuration of the 
form (l.,p((x),(y)),tv);h and ends in a final configuration of the 
form (_L, e, tv'}; h' where tv and h are initialized to suitable initial 
values, tv' and h' include the final values, and _L is a special symbol 

indicating an initial state. Complete executions can be regarded as 
traces So-~~+Si-~~+ • • -~><S„, denoted So-~~+*S„, where S„ is a final 
configuration. Infinite traces correspond to non-terminating execu
tions. Traces that correspond to complete or infinite executions are 
referred to as complete traces. 

2.2 The Notion of Memory Requirement 

We use s(C) to denote the amount of memory required to hold an 
instance object of class C, s(o) denotes the amount of memory 
occupied by an object o, and s(h) denotes the amount of memory 
occupied by all objects in the heap h, namely S r 6 ( j o m (^)s( / i ( r ) ) . 
Since in the semantics of Fig. 3, there is no deallocation, given a 
finite complete trace t = So-~~+* S„, its total memory allocation is 
defined as totalft) = s(hn) — s(ho). I f the derivation is infinite, 
then total (t) = max({s(/ i i) | Si = Ai\ hi £ t}) — s(ho). 

Languages with automatic memory management aim at auto
matically reclaiming memory (freeing it) when its content can no 
longer affect future computations. Therefore, in the presence of any 
GC, the size of the heap might also decrease. Hence, the mem
ory requirement of an execution is defined as the maximum size 
of all intermediate heaps. More formally, given a complete trace t, 
and assuming that the initial heap ho contains initial data that wi l l 
not be deallocated during the execution, the memory requirement 
(or peak memory usage) of t in the presence of GC is defined as 
peak(t) = max({s(/ i i) | Si = Ai\ hi £ t}) — s(ho). This is the 
notion that our analysis aims at approximating. 

3. Parametric Inference of Memory 
Requirements 

In practice, when executing a program, there is a maximum heap 
size limit, and when it is exceeded the program terminates in an 
out of heap memory error state. Building over previous work on 
heap space analysis [2, 3], we present a novel approach to inferring 
accurate memory requirements which can be used in combination 
with reachability-based or liveness-based memory managers. From 
a practical point of view, our analysis results are sound under only 
the assumption that GC wi l l reclaim memory if we are about to ex
ceed the heap size limit and new memory has to be allocated. This 
is to say that, when executing the program by fixing the inferred 
memory requirement as heap size limit, it is ensured that the pro
gram wil l not run into an out of heap memory state.1 The analysis 
consists of four steps which wi l l be described in the following four 
sections: 

1. Generation of upper bounds on the total memory consump
tion ([2, 4]). 

2. Inference of information on lifetime of objects. 

3. Generation of memory requirement recurrence relations. 

4. A partial-evaluation based transformation of the recurrence 
equations. 

3.1 Total Memory Allocation Upper Bounds 

Any heap space analysis aims at approximating the memory usage 
of the program as a function of the input data sizes. As customary, 
the size of data is determined by its variable type [1]: the size of 
an integer variable is its value; the size of an array is its length; 
and the size of a reference variable is the length of the longest path 
that can be traversed through the corresponding object (e.g., length 
of a list, depth of a tree, etc.). We use the original variable names 
(possible primed) to refer to the corresponding size variables; but 
we write the size in italic, e.g., if variable 1 in f i is a reference to a 

In Java, the option “-Xmxn” can be used to specify the memory limit. 



class Test { 
static Tree m(int n) { 

if ( n>0 ) return new Tree1(f(n,g(n)), m(n-1),m(n-1)); 
else return null; 

} 

static List g(int n) { 
if ( n < = 0 ) return null 
else return new List2(n,g(n-1)); 

} 

static int f(int n, List l) { 
int r=0; 

while (l != null) { 
r += (new Long3(l.data)).intValue(); 
l = l.next; 

} // List2 is not live 

for (int i=n; i>0; i--) 
r *= (new Integer4(i)).intValue(); 

return r; 
} 

m((n),(r}) <-
n > 0 ,® 

so := new Tree , © 
g((n),(si}),© 
f«n,s i ) ,<si» , 
s2 : = n - 1,® 
m((s2),(s2}), 
s3 := n - 1,© 
m((s3},(s3}), 

Ín í tTree( ( so , S i , S2 , S3}, (}) , 
r = S0. 

m((n), (r)) <— 
n < 0, 
r := null. 

f((n, 1), (r)) <— 

r : = 0 , O 
f i«l , r ) ,<l , r», 
i := n, @ 
f2«i,r),<i,r». 

fi ({1, r), (1, r)) <— 
1 / null,® 
so := new Long , 
si := l.data, 
i n i t L o n g ( ( s o , S l ) , (}) , 

intValueLong((so}, (so)), 
r := r + s0, 
1 := l.next, ® 
f i«l , r ) ,<l , r». 

fi((l,r),(l,r}) -
1= null. 

Í2 ({i, r), (i, r)) <— 
i > 0 ,® 
so := new Integer , 
initint((s0,i},(}), 
intValueint((so}, (so)), 
r := r * so, 
i := i — 1, ® 
f2«i,r>,<i,r». 

f2((i,r),(i,r}) -
i < 0. 

Figure 2. Java code of running example and rule-based representation of m and f 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

b = x := exp, v = eval(exp, tv) 

b 

{p, b-bc,tv)-A; 

x := new C1, 

h ~-> (p, be, tv[x 

o=newobject(C1) 

v])-A;h 

r^dom(h) 

(p, b-bc, tv)-A; h ~-> (p, be, tv[x i—• T])-A; h[r i—• o] 
b = x := y.f, tv(y) / null, o = h(tv(y)) 

(p, b-bc, tv)-A; h ~-> (p, be, tv[x i—• o.f])-A; h 
b = x.f := y, tv(x) / null, o = tv(x) 

(p, b-bc, tv)-A; h ~-> (p, be, tv)-A; h[o.f i—• tv{i¡)\ 
b = q((x), (y)), there is aprogramrule q({x'}, (y')):=g,bi, • • • ,bk 
such that tv =newenv(q), Wi.tv {xi) = tv{xi), eval(g, tv ) = true 

{p, b-bc, tv)-A; h~~+ {q,bi • .. . • bk, tv }-{p[y,y],bc,tv)-A;h 

{q,e, tv)-{p[y, y'],bc,tv')-A;h ~~+ {p, be, tv'[y i—> tv{y')\)-A; h 

Figure 3. Operational semantics of bytecode programs in rule-based form 

list, then / represents its length. Note that the size measure of data 
structures is unrelated to function s(C) as defined in the previous 
section to measure the actual space occupancy. The size measure 
is mainly used for estimating the number of iterations of recursive 
procedures. When we need to compute the sizes v of a tuple of 
variables x, we use the notation v = a(x, tv,h), which means that 
the integer value i>¿ is the size of the variable x¡ in the context of the 
variables table tv and the heap h. For instance, we need to access 
the heap h where the list 1 is allocated to compute its length v. I f 
x is an integer variable, then its size (value) is obtained from the 
variable table tv. 

Standard size analysis is used in order to obtain relations be
tween the sizes of the program variables at different program 
points [12]. For instance, associated with the recursive rule f i , 
we infer the size relation / > / ' which indicates that the length of 1 
decreases when calling f i recursively where / ' refers to the size of 
1 at the program point where f i is called recursively. We denote by 
ipr the conjunction of linear constraints that describes the size rela
tions between the abstract variables of a rule r and refer to [12, 1] 
for more information. The rest of our analysis is parametric w.r.t. 
the size relations, which are an external component, and can also 

admit user-defined size relations as [14]. Given a program P and 
the relations ip for its rules, a recurrence relation (RR) system for 
total memory allocation is generated by applying the following 
definition to all rules in P. 

D E F I N I T I O N 3.1 (total memory allocation equations [2]). Let r 
be a rule of the form p((x) , (y)) <— g, b i , . . . , b n and ipr its corre
sponding size relations. Then, its total memory allocation equation 
is defined as p{x) = E"= iA / ! (b¡) , ipr where M ( x : = new C1) = 
sf^C1), A / ! (qi((x i) , (yi))) = qiixi); otherwise M(b i ) = 0. 

Note that each call in the rule qi((x¡), (yi)) has a corresponding 
abstract version qiixi) where Xi are the size abstractions of x¡ at 
the corresponding program point. The output variables are ignored 
in the R R as the cost is a function of the input data sizes, but the 
relation they impose on other variables is kept in ipr. The same 
procedure name is used to define its associated cost relation, but in 
italic font. An important point is that the R R must keep the order 
of the corresponding size constants and the calls in their right hand 
sides (rhs) exactly as they appear in the rule they are generated 
from. This was not required by previous memory analyses [3, 2], 

} 



but it wi l l be crucial when developing our analysis in order to make 
R R capture the heap space usage at a program point level. 

E X A M P L E 3.2. The total allocation equations for the rules m and 
f in Fig. 2 are: 

m(n) =s(Tree )+g(n)+f(n,Si)+m(s2)+m(s3) 
{n>0, si=n, S2=n—1, ss=n— 1} 

m(n) =0 {n=0} 
f{p,,l)=fi(l,r)-\-f2{i,r) {r=0,i=n} 

The first equation corresponds to the first rule of procedure m. It 
states that the total memory consumption when executing m with 
an input value n is: the size of an object of type Tree , plus the 
consumption of the corresponding calls to g, f and the recursive 
calls to m. Note that the attached constraints describe the size 
relations between the local variables and the input variable n. The 
total allocation for f is the sum of total allocations of the loops f i 
andÍ2. • 

Once the R R are generated, a worst-case cost analyzer uses a solver 
in order to obtain closed-form upper bounds, i.e., cost expressions 
without recurrences. Given a R R p(x), we denote by pu (x) its 
upper bound. The upper bounds that [4] can infer from the above 
R R are cost expressions of the following form: 

e = n|s(C)|nat(l)| log(nat(l) + 1)|e * e|ei + ei|2nat^ ' | 
max({ei , . . . ,efc}) 

where n is an integer, / is a linear expression and C is a class. 
Function nat is defined as nat(i>)= max({-y, 0}) to avoid negative 
values. A cost expression must evaluate to a non-negative value 
for any input. The technical details of the process of obtaining a 
cost expression from the R R are not explained in the paper as our 
analysis does not require any modification to this part. In what 
follows, we rely on the R R solver of [4] to obtain upper bounds 
for our examples, sometimes simplified by removing constants to 
facilitate understanding. 

E X A M P L E 3.3. The total memory upper bounds obtained from the 
RR of Ex. 3.2 are: 

f (n, I)= nat(l) * s(Long3)+nat(n) * s(Integer4) 
m (n) =(2nat'n-' —l)*(s(Tree )+nat(n) * (s(List )+ 

s(Long3)+s(Integer4))) 

Intuitively, for method f, observe that the first (resp. the second) 
loop is executed nat(/) (resp. nat(n)) times and at each iteration 
a Long (resp. Integer ) object is allocated. For m, we have an 
exponential number of recursive calls, at each one: an object Tree 
is allocated, g allocates nat(n) objects List and f contributes 
with its allocation. The inferred upper bounds capture exactly this 
intuition. 

3.2 Inference of Objects Lifetime 

A GC strategy classifies objects in the heap into two categories: 
those which are collectible and those which are not. We mean by 
applying a GC strategy on a heap the process of removing all col
lectible objects from such heap. Most types of garbage collectors 
determine unreachable objects as collectible, i.e., they eliminate 
those objects to which there is no variable in the program environ
ment pointing directly or indirectly. The more precise alternative is 
to rely on the notion of liveness. An object is said to be not live (or 
dead) at some state i f it is not used from that point on during the 
execution. The static inference of both such collectible information 
is undecidable and therefore it is usually approximated. A common 
approach to approximate it is to provide information for each pro
gram point on the types (i.e., the class name with allocation site) 
of collectible objects instead of on the actual objects. This approx
imation is typically done w.r.t. an entry procedure (such as main in 

Java). In order to define these notions, we first make all program 
points unique. The fc-th program rule p({x), {y}) <— g, b1,..., bn 

has n + 1 program points. The first one, [k, 0], after the execution 
of the guard g and before the execution of 6i until [k, n] after the 
execution of b„. 

D E F I N I T I O N 3.4 (collectible classes). Let P be a program with 
an entry procedure p({x), {y}), C1 a type, [k,j] a program point, 
and Q a GC strategy. We say that C1 is collectible at [k,j] w.r.t. 
Q, if for any complete trace t that starts from an initial state 
So = {-L,p({x), {y}), tvo); ho andany S„ = {p ,bj • bc,tv„)-A;h„ 
in t, applying Q on hn results in a heap which does not have any ob
ject of type C1 (i.e. any object created at statement “new C" ”). The 
set of all collectible classes at [k,j] w.r.t. Q is denotedC{Q, [k,j]). 

The set of all collectible classes at a program point [k,j] w.r.t. a 
reachability-based G C strategy Qr, called unreachable classes, is 
denoted C{Qr, [k, j])). This set can be approximated using points-
to analysis [24]. For simplicity, we assume that all unreachable 
objects are collected whenever Qr is activated. In practice, this can 
be adjusted to the actual underlying G C strategy. 

E X A M P L E 3.5. The following reachability information is obtained 
for the program points in Fig. 2. At ®, © ,© and ©, the set of 
reachable classes is {Tree } ; and at ©, ® , ®, @, ®, ®, and 
© the set of reachable classes is {Tree , List }. Likewise, the 
reachability information for the program points in Fig. 1 is that 
at ® the set of reachable classes is { A } , at © is { A , B } , at 
© is {A , C}, and at © is {E } . The complementary sets are the 
unreachable classes. 

As another instance, we consider a liveness-based G C strategy. 
This is interesting because it allows us to approximate the mem
ory requirement for region-based memory managers and garbage 
collectors that make use of compile-time liveness information. Be
sides, it allows obtaining upper-bounds on the (theoretical) mini
mal memory requirement for executing a program, which provides 
useful information for understanding/debugging the memory usage 
of programs. The set of all collectible classes at a program point 
[k, j] w.r.t. a liveness-based G C strategy Qi, called dead classes, is 
denoted by C(Qi, [k, j])). This set can be approximated by using 
points-to analysis and backwards inference similar to [9]. 

E X A M P L E 3.6. The following liveness information is obtained for 
the program points in Fig. 2: at ®, ©,©,©, ©, ® , and ® 
the set of live classes is {Tree } ; and at ©, ® , © and ® it is 
{Tree ,List }. The important point is that, at ®, objects of type 
List are still live since their field data still has to be accessed, 
but at © the access has already been performed and List is not 
live anymore. Similarly, the liveness information obtained for the 
program points in Fig. 1 is that at ® the set of live classes is { A } 
and at @ is {A , B } , and at © and ® is 0. The complementary sets 
form the dead classes. 

Note that usually context-insensitive points-to analysis is enough in 
order to precisely approximate unreachable and dead classes sets. 
However, when advanced object oriented patterns are used, such as 
factory, context-sensitive points-to analysis might be required. 

3.3 Parametric Recurrence Relations 

Suppose that n i is the actual memory usage at some program point, 
and that n^ is the amount of memory that corresponds to objects 
that can be freed by the garbage collector at that point. Then, 
obviously n\ — n^ is the current memory usage after freeing the 
memory that corresponds to those collectible objects. In order to 
obtain an upper bound for n\ — «2, one can obtain an upper bound 
for n\ and a lower bound for n^ . In our context, we have a symbolic 



upper bound e\ for n i , but the information about collectible classes 
does not provide any lower bound on ni, since it does not include 
information on how many objects of each type we have at that 
program point. But, since the collectible classes sets in Sec. 3.2, 
provide the information that all instances of specific classes at that 
program point can be freed, and since e\ is a symbolic upper bound, 
we can obtain a sound upper bound for n\ — ri2 by replacing in ei 
all occurrences of s(C) by 0, for each C that is in the corresponding 
set of collectible classes. By relying on this basic idea, we wi l l 
estimate the memory requirement at each program point and then 
choose the maximum among them. 

In what follows, given a cost expression e=e i + . . . + e „ ,we 
denote by e[e¿ 1—• / ] the replacement of the sub-expression e¿ by 
/. 

D E F I N I T I O N 3.7 (total memory). Given an expression e = ei + 
. . . + e„, where each e¿ is either of the form s(C') or a call q{x), 
we define its total memory, denoted total(e), to the cost expression 
obtained as e[e¿ 1—• qu (x)], for each e¿ which is a call to a 
procedure of the form q{x). 

E X A M P L E 3.8. Assume that m f = s(C) + s(E). Given the ex
pression e = s(A) + s(B) + rri2 + s(D), we have total(e) = 
s(A) + s(B) + s(C) + s(E) + s(D). 

The interest of having the total memory is that we can approximate 
the active memory (i.e., the memory that cannot be collected by the 
G C ) at a given program point from it as follows. 

D E F I N I T I O N 3.9 (active memory). Given an expression e, we de
fine the active memory at a program point [k, j] w.r.t. a GC strat
egy Q, denoted A(e, [k,j], Q), as the cost expression obtained as 
íoía/(e)[s(C1) 1—• 0] for all C1 £ C(Q,[k,j]). 

E X A M P L E 3.10. From the expression e in Ex. 3.8, the reachability 
information of Ex. 3.5, and the liveness information of Ex. 3.6, for 
the program point @ in Fig. 1, we obtain A(e, @, Qr) = s(E) and 
A(e, @, Qi) = 0. 

The main idea behind our memory requirements analysis is to 
produce disjunctive equations which capture the active memory 
at the program points where the memory usage can increase, i.e., 
at the memory allocation instructions. Since the R R generated in 
Def. 3.1 allow us to identify exactly these points by means of 
their associated size constants, we generate the parametric memory 
requirements equations from them.2 

D E F I N I T I O N 3.11 (memory requirements equations). Given a to
tal memory allocation equation “p{x) = ei + • • • + e„ , ip” and 
a GC strategy Q, the corresponding memory requirement equa
tion is defined as: “p{x) = max(fi,... , / „ ) , ip”, such that 
fi = -4(ei + • • • + e¿_i, [k, j] ,Q)-\-éi where [k, j] is the program 
point that corresponds to e¿ and s(C') = sf^C1). 

An important point in the above definition is that, when computing 
the active memory of ei + • • • + e¿_i, procedure calls are replaced 
by their total memory upper bounds and hence the result is a 
symbolic cost expression. In contrast, we have that é¿, when e¿ 
is a call, wi l l be defined by corresponding memory requirements 
equations when applying Def. 3.11 to the equations defining e¿. 
Whene¿ is a constant, function sis justs. As mentioned in Sec. 3.1, 
it is crucial for the above definition to maintain the order (and 
program point information) in the expressions of the rhs of the total 
allocation equations in order to be able to apply the program point 
collectible classes information into them. 

2 In previous work [3, 2] the equations are generated from the program rules 
instead. 

E X A M P L E 3.12. The total memory equations for the methods in 
Fig. 1 are (for simplicity we ignore 1113 since it does not affect the 
memory consumption): 

rni=s(A) + s(B) + rri2 + s(D) 
m2=s(C) + s(E) 

According to Def. 3.11, the following memory requirements equa
tions are obtained for a generic GC strategy Q: 

rhi=max(s(A), 
^4(s(A), Q), Q) + s(B), 
A(s(A) + s(B), ©, Q) + m2, 
^4(s(A) + s(B) + 1112 , ®, G) + s(D)) 

m2=inax(s(G), A(s(C), (3), Q) + S(E)) 

The disjunctive information is handled in the solver by replacing 
the max operator by non-deterministic equations and finding an 
upper bound using [4]. Below, we show to the left (resp. right) the 
non-deterministic equations for a reachability-based strategy be
fore (resp. after) the elimination of the unreachable classes com
puted in Ex. 3.5. The notation o(C) indicates setting s(C) to zero 
once collectible classes are eliminated: 

mi=s(A) 
rni=v4(s(A), ®, 5r)+s(B) = s(A)+s(B) 
rn-i=-4(s(A)+s(B), @; Qr)-\-ñi2 = s(A)+s(B)+rii2 
mi=v4(s(A)+s(B)+rri2 , ®, 5r)+s(D)= o(A) I o(B) I o(C)-|-

s(E)+s(D) 
i7l2=s(C) 
íTi2=-4(s(C), (3), 5r)+s(E) = s(C)+s(E) 

The upper bounds obtained from these equations are 

7'i%2 = s(C) + s(E) 
m\ = s(E) + max(s(A) + s(B) + s(C), s(D)) 

This upper bound improves over the scope-based upper bound S in 
Fig. 1 but we still have not succeeded in inferring R. This is because 
we need the partial evaluation transformation explained in the next 
section. 

As another instance, the equations for a liveness-based strategy 
Qi (i.e., w.r.t. the dead classes of Ex. 3.6) differ from the above ones 
only in the fourth and sixth equations which are as follows: 

mi=v4(s(A)+s(B)+rri2 , ®, Gi)-\-s(D)= o(A) I o(B) I o(C) 
+o(E) I s(D) 

iri2=-4(s(C), (3), 5¡)+s(E) = o(C)-|-s(E) 

The upper bounds obtained from these equations are 

7'i%2 =max(s(C), s(E)) 
m\ =max(s(A) + s(B) + max(s(C), s(E)), s(D)) 

Again, the partial evaluation transformation is needed to obtain 
L of Fig. 1. As mentioned in Sec. 1, liveness-based upper bounds 
safely and accurately describe the peak memory usage for a mem
ory manager based on liveness. For example, this is the case of 
region-based manager, for the program in Fig. 2 if objects of the 
same type are allocated in the same region, and for the program in 
Fig. 1 if A, B and C are allocated in one region which is deallo
cated at program point (3). 

T H E O R E M 3.13 (soundness). Let P be a program, Q be the GC 
strategy, p( (x) , (y} ) an entry procedure, and p11 (x) an upper 
bound for the corresponding memory requirement equations gen
erated in Def. 3.11. Assuming that we start the execution from an 
initial state SQ = (_L,p((x), (y)),tvo)', ho then, for any complete 
trace t, it holds pu (v) > peak{t) where v = a(x, too, ho) if one 
of the conditions hold: 

(i) Q is applied as soon as objects become collectible; 



(ii) the heap size is fixed to pu (v) and Q is applied when we reach 
this limit. 

Informally, the soundness theorem ensures that our analysis cor
rectly approximates the peak of a procedure’s execution for any 
G C scheme Q in the two scenarios explained in Sec. 1. 

3.4 A Partial Evaluation Transformation of Recurrence 
Relations 

The technique in Sec. 3.3 obtains precise upper bounds when ob
jects become collectible in the same rule in which they have been 
created. However, i f an object becomes collectible in another rule 
(e.g., of a called method), the effect of removing it might be de
layed until it become visible in the same rule, which might result 
in a loss of precision. This happens in the program of Fig. 1, the 
object to which the variable “a” refers becomes dead in rri2 at pro
gram point (3), and the object to which “a. f” refers becomes both 
dead and unreachable at program point (3). However, the equations 
that we generate for m i in Ex. 3.12 (both for Qi and Qr) do not 
take advantage of this information, but rather from the informa
tion that such objects are dead and unreachable at @, i.e., only 
upon exit from rri2. This prevents us from obtaining the precise up
per bounds R and L in Fig. 1. The well-known technique of partial 
evaluation [17] (PE for short) gives us a leeway. P E is an automatic 
program transformation technique whose goal is to specialize pro
grams by propagating static information by means of unfolding. In 
our context, the notion of unfolding corresponds to the intuition of 
replacing a call to a relation by the definition of the correspond
ing relation, and therefore merging the corresponding rules into the 
same equation and making more program points visible. 

E X A M P L E 3.14. Consider the total memory equations of Ex. 3.12. 
Unfolding the call to rri2 into its calling context results in the 

following equation: 
mi = s(A) + ®s(B) + ©s(C) + (3)s(E) + (4)s(D) 

From it, by applying Def 3.11, we obtain the following equation for 
Qr which is clearly more accurate than the one we have obtained 
in Ex. 3.12: 

mi=max(s(A), 
,4(s(A), (T), Qr) -+- s(B), 
,4(s(A) + s(B), ©, Qr) + s(C), 
,4(s(A) + s(B) + s(C), (3), Qr) + s(E), 
,4(s(A) + s(B) + s(C) + s(E), (J), Qr) + s(D)) 

=max(s(A)+s(B)+s(C),s(A)+s(C)+s(E),s(E)+s(D)) 

Solving this equation results in the optimal upper bound R. The 
key point is to incorporate the reachability information at program 
point (3) in the equation of mi. We could not do it in Ex. 3.12 since 
it was in a different rule. Similarly, for Qi we get an equation which 
has an upper bound that coincides with the upper bound L of Fig. 1. 

The unfolding process could be defined on the programming lan
guage, however, defining it on the R R has the main advantage of 
being much simpler. This is because R R are made up only of con
stants s(C), calls to other equations and linear constraints. This 
kind of unfolding is basically the same as that of clauses in con
straint logic programming [13] and that of the upper bound solver 
of [4]. 

D E F I N I T I O N 3.15 (unfolding step). Let E be the recurrence equa
tion “p{x) = 6i + • • • + bi—i + q{xi) + &i+i + • • • + bn, ip”, and 
E a renamed apart equation q(y) = ci + • • • + Cm, V3 ” defining 
q such that vars(E) n vars{E ) = 0. Then, the unfolding of E 
w.r.t. q{xi) and E is “p{x) = 6i + • • • + 6¿-i + c\ + • • • + cm + 
bi+i + • • • + bn, ip A ip A {XÍ = y} ” . 

The unfolding step basically generates a new equation by: substitut
ing the (renamed apart) definition of q in its calling site, joining the 
constraints of both p and q (ipAip'), and unifying the variables of the 
caller and the variables of the renamed apart definition ({XÍ = y}). 
When the call we want to unfold is defined by several equations, 
the above operation is repeated for each of them possibly generat
ing several equations. When ip' A ip A {XÍ = y} is unsatisfiable, 
no equation is generated since this does not correspond to a valid 
execution. 

Performing an unfolding step solves the problem when the 
object is created in a procedure p and becomes collectible in the 
unfolded procedure q which is called from p. However, there are 
scenarios where more steps are required. For example, an object 
might become collectible not during an immediate call but rather in 
a transitive one. Even more, an object can be created and become 
collectible in procedures that do not have a caller/callee relation. 
In general, unfolding steps should be applied repetitively until the 
program points that correspond to the creation and collection of 
an object are as close as possible in the equations. This process in 
the presence of recursive relations (coming from loops) might be 
non-terminating. Fortunately, the problem has been well studied in 
the P E field and we can adopt any terminating strategy [19]. For 
instance, in [4], the strategy is to leave one relation per recursive 
strongly connected component (SCC) and unfold the remaining 
ones. In order to take more advantage of collectible classes, it is 
even possible to unfold a recursive S C C into other SCCs, which 
corresponds to loop unrolling. In P E terminology, a binding-time 
annotation (BTA) is a set of predicates which cannot be unfolded, 
either because it could endanger termination or because it would 
not be profitable (e.g., it would not make the points of interest 
closer in the rules). Our definition of partially evaluated equations 
can be used with any B T A which ensures termination. 

D E F I N I T I O N 3.16 (partially evaluated RR) . Given a set of RRs 
and a BTA, the partially evaluated RRs are obtained by iteratively 
unfolding (Def. 3.15) all calls in the rhs of the equations which do 
not belong to BTA w.r.t. its defining equations. 

Once the R R have been partially evaluated, we apply Def. 3.11 to 
them in order to generate the corresponding memory requirement 
equations. 

E X A M P L E 3.17. For the simple example of Fig. 1, if the BTA 
includes only m i , we obtain the RR in Ex. 3.14 and the optimal 
R and L upper bounds of Fig. 1. 

T H E O R E M 3.18 (soundness). Let P be a program, Q the used GC 
technique, p( (x) , (y} ) an entry procedure, and pu (x) an upper 
bound for the corresponding memory requirement equations gen
erated in Def. 3.11 after PE. Assuming that we start the execution 
from an initial state So = (J-, p((x) , (y)), tvo)', ho then, for any 
complete trace t, it holds pu (v) > peak{t) under the same condi
tions as in Theorem 3.13 where v = a(x, tvo, ho). 

The key difference with the P E of [4] is that we apply P E previ
ously to the generation of the memory requirement R R , while [4] 
uses P E only to solve them. This is an essential difference since we 
would not be able to obtain the propagation of collectible informa
tion that we need to obtain memory requirements bounds by using 
P E like [4]. As other differences, we can apply P E with any termi
nating B T A while [4] requires checking further conditions on the 
associated graph. 

3.5 Comparison to Previous Work 

Our work improves over scope-based heap space analyses [3, 6] in 
both its accuracy and its applicability. Essentially, since we over
come the scope-based restriction, we are able to infer strictly more 



precise upper bounds for reachability-based memory managers, as 
the example below wil l show. Besides, since our equations capture 
the memory requirement at a program point level (rather than as a 
method level as previous approaches do), we can apply it in com
bination with a liveness-based memory manager which can deal
locate objects at any program point. Altogether, our analysis intro
duces the novel applications pointed out in Sec. 1, which scope-
based analyses do not have. In order to clarify the technical differ
ences with the analysis in [3], we apply the scope-based method 
to our running examples. We obtain the following equation for the 
program in Fig. 1: 

rh\ = s(A) + s(B) + max(rri2, rii2 + s(D)) 

where rfi2 denotes the peak consumption of rri2 and rfi2 its escaped 
memory, i.e., the memory created during the execution of rri2 and 
still reachable upon return from it. The idea is hence that when 
there is a method call, the equation contains a disjunctive max 
between the peak consumption of such call (i.e., rh^) and the 
memory that escapes from it plus the peak of the continuation 
(i.e., fri2 + s(D)). Apart from the different way in generating the 
equations, a fundamental difference with our analysis is that, by 
relying on a escape analysis, only the objects created in the current 
scope and in scopes reached transitively from it can be deallocated. 
This is clearly a subset of program point reachability or liveness 
as we do. As a consequence, the sizes of A and B are always 
accumulated and, as they become dead (resp. unreachable) in rri2 
(resp. upon exit from 1112), this memory state is missed in the R R . 
This leads to imprecision when inferring memory requirements and 
illustrates why we need R R which capture the memory usage at a 
program point level, as discussed in Sec. 1. 

The optimization sketched in [3] to approximate the ideal G C 
consists in splitting the rules into smaller scopes in order to apply 
G C more often. Unfortunately, it suffers from the same scope 
limitation and hence it does not improve the upper bound neither. 
Moreover, it is not straightforward, and in many cases it is even 
impossible, to generate these smaller scopes, since the scope might 
begin in the middle of one rule and end in the middle of another 
one. For example, in the program of Fig. 1, a new scope should be 
created for the first two instructions of m i and the part of 1112 up to 
program point (3). Moreover, the partition which is convenient for 
one object might not be good for another one. In this example, the 
accuracy gain is a constant factor. In more complex programs, the 
gain can be much larger as the next example shows. 

E X A M P L E 3.19. By applying Def. 3.11, the memory requirement 
equation generated for rcifrom the equation in Ex. 3.2, the total 
upper bounds of Ex. 3.3 and the reachable classes of Ex. 3.5 is: 
rh(n)= 
max(s(Tree1),s(Tree1)+g(n),s(Tree1)+nat(n)*s(List2)+ 

/(n,si^sCTree1) | nat(n)*a(Liat2) | nat(ai)*a(Long3) | 
nat(n)^a(Intogor4)+m(s2),s(Tree1) | nat(n)*a(Liat2) 
I nat(ai)*a(Long3) | nat(n)^a(Intogor4)+ 

(2n a t ( s 2 )-l)*s(Tree1)+m(s3) ) 
which can be solved (after solving f) into the following closed form 
for the case n>0: 

rhu (n)=(2"st("'— l)*s(Tree )+max(s(Long ),s(Integer ))+ 
nat(n)*s(List2) 

The upper bound obtained by [3] (applying the optimization of 
ideal GC) is: 

(2nat(n) — l)*(s(Tree1) + nat(n)*s(List2))+ 
nat(ra)* max(s(Long3),s(Integer4)) 

There are two fundamental differences: 

(1) For executing f, the approach described in this paper require 
only max(s(Long3),s(Integer4)) of memory, while [3] re
quires nat(n) times of max(s(Long3),s(Integer4)). This is 
because in a scope-based approach the objects created in f1 
(resp. f2) are not garbage collected until we exit from f1 (resp. 
f2), while they become dead/unreachable right after calling 
intValue; 

(2) The memory required by g is accumulated only once to the 
memory requirement of m, while [3] requires space for allo
cating g an exponential number of times. This is because the 
List2 objects are created in g and become unreachable (resp. 
dead) in a different scope m (resp. f). 

The above example not only shows the further accuracy of our 
approach w.r.t. scope-based ones, but it also illustrates the power 
of our method in the kind of upper bounds we infer: we capture 
exponential, logarithmic and polynomial memory bounds. This 
improves over type-based memory usage analyses [16] which are 
often restricted to linear upper bounds. 

4. Experimental Evaluation 
We have implemented our technique within XYZ3 which can be 
tried out through its web interface at: XYZ4 by selecting the cost 
models for memory requirement. Our reachability analysis is based 
on the points-to analysis of [24], and the heap liveness analysis 
is similar to the region-based liveness of [9]. The PE transforma
tion leaves one relation per SCC as explained in Sec. 3.4. The ex
perimental evaluation has been performed on the JOlden bench
mark suite [8] and on GCBench, a typical example from the GC 
community [5]. For each benchmark, we infer total allocation up
per bounds UT and the peak heap usage using the cost models: 
US for scope-based GC, UR for reachability-based GC, and UL for 
liveness-based GC. As regards the GCBench benchmark, its main 
method consists of 4 parts that create different data structures. In 
this case, UT and US are the sum of the sizes of these data struc
tures since they escape to the scope of the main and hence cannot 
be collected until execution finishes, while UR and UL are the max
imum among their sizes. Besides, in the last part of the main, there 
are 3 nested loops and, at each iteration of the inner one, a tree 
is created and becomes dead and unreachable at the end of it. For 
this part, UT and US require a quadratic number of trees while UR 
and UL require a single tree (the upper bounds are too large to be 
shown). 

As regards the JOlden benchmarks, they all create an initial 
data structure and then do some post-processing on it. Therefore, 
the overall memory requirement is dominated by the size of the 
initial data structure and hence US, UR and UL are almost the 
same if we start the analysis from main. However, during the post
processing, there are some methods in which temporary objects are 
created and, for them, US is significantly larger than UR and UL. 
Table 1 summarizes our experiments by focusing on these methods. 
We substitute the symbolic expressions s(C) by the number of 
fields C has, and for arrays we consider their sizes, so that the 
system can perform mathematical simplifications. As theoretically 
expected, in all examples U T ≥ U S ≥ U R ≥ U L . Let us 
explain intuitively where the gain in accuracy comes from. In 
the first two methods, we found loops that create objects which 
become dead at the end of each iteration, but we could not infer 
that all of them become unreachable at that point, therefore U L is 
more precise than U R . The hackGravity method clones an object 
of type MathVector and immediately in the next instruction it 
creates an object of type HG. Our analysis accurately infers that 

3 the system name is withheld 
4 the actual link is withheld 



Bench 
mst.MST.computeMST 
bh.Tree.vp 
bh.Body.hackGravity 
bh.MathVector.toString 
em3d.BiGraph.toString 
voronoi.Vertex.print 
bisort.Value.inOrder 

UT 

4*nat(A-l) 
28*nat(A)+8 

21 
10 

4*nat(A-l)+2 
nat(A-1) 

4*2 - 2 nat(A-1) 
4*2 - 2 

US 
4*nat(A-l) 
28*nat(A)+8 

21 
10 

4*nat(A-l)+2 
2*nat(A-l)+2 
2*nat(A-l)+2 

UR 
4+2*nat(A-l) 
28*nat(A)+8 

21 
10 
4 
2 
2 

UL 
2 
30 
15 
4 
4 
2 
2 

RR 
2 

12*A+24 
12 
2 
4 
2 
2 

Table 1. Total, Scope, Reachability, Liveness Upper Bounds by COSTA on the JOlden 

MathVector becomes dead before creating HG. Indeed, this has 
spotted a possible bug: the cloned MathVector object is not used 
but rather the original one. Again, the objects are still reachable 
and hence U L > U R . In the last three methods the gain originates 
from the creation and manipulation of Strings. Usually, several 
StringBuffer objects are created to hold intermediate strings and 
become dead and unreachable as soon as data is printed. When such 
a statement occurs inside a linear loop like in em3d.toString, 
we are able to infer a constant number of StringBuffer objects, 
while the scope-based peak analysis obtains one proportional to the 
number of iterations. Even more, in the last two methods, the total 
consumption is exponential due to two recursive calls. The scope-
based peak is linear since the objects created during the execution 
do not escape from the method and hence can be garbage collected 
before the second call. Importantly, we improve this upper bound 
to a constant in the case of UR and UL. 

Finally, in the last column, we aim at evaluating the precision 
of our analysis for Java programs by comparing our upper bounds 
with the memory consumption of real executions. For this aim, we 
have implemented a JVMTI agent5 which, besides tracking object 
allocations and deallocations, explicitly invokes the (reachability-
based) JVM garbage collector before any object or array creation. 
Column RR shows the obtained consumptions, using the same mea
sure as before (i.e. number of fields and size of arrays) which cor
respond to the real minimal memory requirements. The sizes of the 
corresponding input are not relevant when the actual memory con
sumption is constant, which is the case of all benchmarks except 
bh.Tree.vp. For this one, we have run the program with a set of 
different inputs, and from the obtained results we have derived the 
cost expression 12*A+24, which characterizes the actual consump
tion for all values of A greater than 1. It can be observed that UR is 
safe in all cases and very close to RR in most of them, except for the 
first two benchmarks in which the reachability analysis loses preci
sion, mainly due to the context-insensitive nature of the underlying 
points-to analysis. Note that, in spite of the fact that UL is based on 
liveness and hence more precise, it is larger than RR in some cases. 
This is because of the loss of precision in the underlying (static) 
liveness analysis. All in all, our experiments reveal that the mem
ory requirements inferred by our analysis are accurate and close to 
the actual consumption. 

5. Conclusions 
Predicting the memory requirements of a program’s execution is a 
critical component in software development. The memory require
ments typically include both the heap and the frames stack usage. 
This paper focuses on the heap space because estimating the max
imal height of the frames stack from our heap analysis is straight
forward, as it is done in [3]. Memory usage has been traditionally 
measured using profiling which is often insufficient since only cer
tain inputs are profiled. Building over recent progress in heap space 

5 See http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/ 

analysis, our work presents a novel approach to inferring symbolic 
bounds of the memory requirements for imperative object-oriented 
languages. It improves over recent work in that it is not tied to a 
particular GC model (unlike [3, 6]), it computes accurate bounds 
for exponential, logarithmic, etc. complexities (unlike [6, 11]) and 
it is fully automatic (unlike [16]). Other approaches to resource 
usage analysis are developed to measure other types of resources, 
namely [14] predicts number of instructions, [1] is generic in the 
definition of cost model but neither of them supports memory re
quirements, since the underlying techniques are developed to mea
sure accumulative resources, while memory usage is a resource that 
increases and decreases along the execution. The problem is differ
ent from memory prediction in functional languages [22, 15] since, 
due to the absence of mutable data structures, GC can be mod
eled in a scoped-based fashion where the scopes are determined 
by the corresponding function definitions. While in imperative lan
guages, objects can be collected outside the scope in which they 
have been created, which makes the static prediction more difficult. 
Other work, such as [10], provides a framework for checking that 
the memory usage conforms to user-supplied specifications. User-
supplied specifications may be hard to provide and are likely to be 
impractical for bytecode programs. 
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Analysis, 15th International Symposium, SAS 2008, Valencia, Spain, 

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/


July 15-17, 2008, Proceedings, volume 5079 of Lecture Notes in 
Computer Science, pages 221–237. Springer-Verlag, July 2008. 

[5] H. Boehm. An artificial garbage collection benchmark. http:// 
www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.html. 

[6] V. Braberman, F. Ferna´ndez, D. Garbervetsky, and S. Yovine. 
Parametric Prediction of Heap Memory Requirements. In ISMM. 
ACM Press, 2008. 

[7] V. Braberman, D. Garbervetsky, and S. Yovine. A static analysis 
for synthesizing parametric specifications of dynamic memory 
consumption. Journal of Object Technology, 5(5):31–58, 2006. 

[8] Brendon Cahoon and Kathryn S. McKinley. Data flow analysis for 
software prefetching linked data structures in Java. In IEEE PACT, 
pages 280–291, 2001. 

[9] S. Cherem and R. Rugina. Region analysis and transformation for 
java programs. In ISMM, pages 85–96. ACM Press, 2004. 

[10] W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory Usage 
Verification for OO Programs. In Proc. of SAS’05, volume 3672 of 
LNCS, pages 70–86, 2005. 

[11] W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory 
Resource Bounds for Low-Level Programs. In ISMM. ACM Press, 
2008. 

[12] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints 
among variables of a program. In POPL, 1978. 

[13] S. Craig and M. Leuschel. A compiler generator for constraint logic 
programs. In Ershov Memorial Conference, pages 148–161, 2003. 

[14] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: precise and 
efficient static estimation of program computational complexity. In 
POPL, pages 127–139. ACM, 2009. 

[15] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for 
First-Order Functional Programs. In 30th Symposium on Principles 
of Programming Languages (POPL’03), pages 185–197. ACM Press, 
2003. 

[16] M. Hofmann and D. Rodriguez. Efficient Type-Checking for 
Amortised Heap-Space Analysis. In Proc. of CSL’09, LNCS. 
Springer, 2009. 

[17] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and 
Automatic Program Generation. Prentice Hall, New York, 1993. 

[18] H. Lehner and P. Mu l̈ler. Formal translation of bytecode into 
BoogiePL. In Bytecode’07, ENTCS, pages 35–50. Elsevier, 2007. 

[19] M. Leuschel and M. Bruynooghe. Logic Program Specialisation 
through Partial Deduction: Control Issues. Theory and Practice of 
Logic Programming, 2(4 & 5):461–515, July & September 2002. 

[20] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. 
Addison-Wesley, 1996. 

[21] R. Shaham, E. K. Kolodner, and S. Sagiv. Estimating the impact of 
heap liveness information on space consumption in java. In ISMM, 
pages 171–182. ACM Press, 2002. 

[22] L. Unnikrishnan and S. Stoller. Parametric heap usage analysis for 
functional programs. In Proc. of ISMM’09. ACM Press, 2009. 

[23] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, 
and P. Co. Soot - a Java optimization framework. In Proc. of 
Conference of the Centre for Advanced Studies on Collaborative 
Research (CASCON), pages 125–135, 1999. 

[24] John Whaley and Monica S. Lam. Cloning-based context-sensitive 
pointer alias analysis using binary decision diagrams. In PLDI, pages 
131–144. ACM, 2004. 

http://
http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.html

