94 research outputs found

    Linear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs

    Full text link
    A bipartite graph G=(U,V,E)G=(U,V,E) is convex if the vertices in VV can be linearly ordered such that for each vertex uUu\in U, the neighbors of uu are consecutive in the ordering of VV. An induced matching HH of GG is a matching such that no edge of EE connects endpoints of two different edges of HH. We show that in a convex bipartite graph with nn vertices and mm weighted edges, an induced matching of maximum total weight can be computed in O(n+m)O(n+m) time. An unweighted convex bipartite graph has a representation of size O(n)O(n) that records for each vertex uUu\in U the first and last neighbor in the ordering of VV. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n)O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n)O(n) time. If no compact representation is given, the cover can be computed in O(n+m)O(n+m) time. All of our algorithms achieve optimal running time for the respective problem and model. Previous algorithms considered only the unweighted case, and the best algorithm for computing a maximum-cardinality induced matching or a minimum chain cover in a convex bipartite graph had a running time of O(n2)O(n^2)

    On the approximability of the maximum induced matching problem

    Get PDF
    In this paper we consider the approximability of the maximum induced matching problem (MIM). We give an approximation algorithm with asymptotic performance ratio <i>d</i>-1 for MIM in <i>d</i>-regular graphs, for each <i>d</i>≥3. We also prove that MIM is APX-complete in <i>d</i>-regular graphs, for each <i>d</i>≥3

    On Minimum Maximal Distance-k Matchings

    Full text link
    We study the computational complexity of several problems connected with finding a maximal distance-kk matching of minimum cardinality or minimum weight in a given graph. We introduce the class of kk-equimatchable graphs which is an edge analogue of kk-equipackable graphs. We prove that the recognition of kk-equimatchable graphs is co-NP-complete for any fixed k2k \ge 2. We provide a simple characterization for the class of strongly chordal graphs with equal kk-packing and kk-domination numbers. We also prove that for any fixed integer 1\ell \ge 1 the problem of finding a minimum weight maximal distance-22\ell matching and the problem of finding a minimum weight (21)(2 \ell - 1)-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of δlnV(G)\delta \ln |V(G)| unless P=NP\mathrm{P} = \mathrm{NP}, where δ\delta is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.Comment: 15 pages, 4 figure

    On the Parameterized Complexity of the Acyclic Matching Problem

    Full text link
    A matching is a set of edges in a graph with no common endpoint. A matching M is called acyclic if the induced subgraph on the endpoints of the edges in M is acyclic. Given a graph G and an integer k, Acyclic Matching Problem seeks for an acyclic matching of size k in G. The problem is known to be NP-complete. In this paper, we investigate the complexity of the problem in different aspects. First, we prove that the problem remains NP-complete for the class of planar bipartite graphs of maximum degree three and arbitrarily large girth. Also, the problem remains NP-complete for the class of planar line graphs with maximum degree four. Moreover, we study the parameterized complexity of the problem. In particular, we prove that the problem is W[1]-hard on bipartite graphs with respect to the parameter k. On the other hand, the problem is fixed parameter tractable with respect to the parameters tw and (k, c4), where tw and c4 are the treewidth and the number of cycles with length 4 of the input graph. We also prove that the problem is fixed parameter tractable with respect to the parameter k for the line graphs and every proper minor-closed class of graphs (including planar graphs)
    corecore