62 research outputs found

    Gene Ontology annotation quality analysis in model eukaryotes

    Get PDF
    Functional analysis using the Gene Ontology (GO) is crucial for array analysis, but it is often difficult for researchers to assess the amount and quality of GO annotations associated with different sets of gene products. In many cases the source of the GO annotations and the date the GO annotations were last updated is not apparent, further complicating a researchers’ ability to assess the quality of the GO data provided. Moreover, GO biocurators need to ensure that the GO quality is maintained and optimal for the functional processes that are most relevant for their research community. We report the GO Annotation Quality (GAQ) score, a quantitative measure of GO quality that includes breadth of GO annotation, the level of detail of annotation and the type of evidence used to make the annotation. As a case study, we apply the GAQ scoring method to a set of diverse eukaryotes and demonstrate how the GAQ score can be used to track changes in GO annotations over time and to assess the quality of GO annotations available for specific biological processes. The GAQ score also allows researchers to quantitatively assess the functional data available for their experimental systems (arrays or databases)

    GeneRIF indexing: sentence selection based on machine learning

    Get PDF

    Semantic role labeling for protein transport predicates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Automatic semantic role labeling (SRL) is a natural language processing (NLP) technique that maps sentences to semantic representations. This technique has been widely studied in the recent years, but mostly with data in newswire domains. Here, we report on a SRL model for identifying the semantic roles of biomedical predicates describing protein transport in GeneRIFs – manually curated sentences focusing on gene functions. To avoid the computational cost of syntactic parsing, and because the boundaries of our protein transport roles often did not match up with syntactic phrase boundaries, we approached this problem with a word-chunking paradigm and trained support vector machine classifiers to classify words as being at the beginning, inside or outside of a protein transport role.</p> <p>Results</p> <p>We collected a set of 837 GeneRIFs describing movements of proteins between cellular components, whose predicates were annotated for the semantic roles AGENT, PATIENT, ORIGIN and DESTINATION. We trained these models with the features of previous word-chunking models, features adapted from phrase-chunking models, and features derived from an analysis of our data. Our models were able to label protein transport semantic roles with 87.6% precision and 79.0% recall when using manually annotated protein boundaries, and 87.0% precision and 74.5% recall when using automatically identified ones.</p> <p>Conclusion</p> <p>We successfully adapted the word-chunking classification paradigm to semantic role labeling, applying it to a new domain with predicates completely absent from any previous studies. By combining the traditional word and phrasal role labeling features with biomedical features like protein boundaries and MEDPOST part of speech tags, we were able to address the challenges posed by the new domain data and subsequently build robust models that achieved F-measures as high as 83.1. This system for extracting protein transport information from GeneRIFs performs well even with proteins identified automatically, and is therefore more robust than the rule-based methods previously used to extract protein transport roles.</p

    Overview of the gene ontology task at BioCreative IV

    Get PDF
    Gene Ontology (GO) annotation is a common task among model organism databases (MODs) for capturing gene function data from journal articles. It is a time-consuming and labor-intensive task, and is thus often considered as one of the bottlenecks in literature curation. There is a growing need for semiautomated or fully automated GO curation techniques that will help database curators to rapidly and accurately identify gene function information in full-length articles. Despite multiple attempts in the past, few studies have proven to be useful with regard to assisting real-world GO curation. The shortage of sentence-level training data and opportunities for interaction between text-mining developers and GO curators has limited the advances in algorithm development and corresponding use in practical circumstances. To this end, we organized a text-mining challenge task for literature-based GO annotation in BioCreative IV. More specifically, we developed two subtasks: (i) to automatically locate text passages that contain GO-relevant information (a text retrieval task) and (ii) to automatically identify relevant GO terms for the genes in a given article (a concept-recognition task). With the support from five MODs, we provided teams with >4000 unique text passages that served as the basis for each GO annotation in our task data. Such evidence text information has long been recognized as critical for text-mining algorithm development but was never made available because of the high cost of curation. In total, seven teams participated in the challenge task. From the team results, we conclude that the state of the art in automatically mining GO terms from literature has improved over the past decade while much progress is still needed for computer-assisted GO curation. Future work should focus on addressing remaining technical challenges for improved performance of automatic GO concept recognition and incorporating practical benefits of text-mining tools into real-world GO annotation

    Mining the Gene Wiki for functional genomic knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ontology-based gene annotations are important tools for organizing and analyzing genome-scale biological data. Collecting these annotations is a valuable but costly endeavor. The Gene Wiki makes use of Wikipedia as a low-cost, mass-collaborative platform for assembling text-based gene annotations. The Gene Wiki is comprised of more than 10,000 review articles, each describing one human gene. The goal of this study is to define and assess a computational strategy for translating the text of Gene Wiki articles into ontology-based gene annotations. We specifically explore the generation of structured annotations using the Gene Ontology and the Human Disease Ontology.</p> <p>Results</p> <p>Our system produced 2,983 candidate gene annotations using the Disease Ontology and 11,022 candidate annotations using the Gene Ontology from the text of the Gene Wiki. Based on manual evaluations and comparisons to reference annotation sets, we estimate a precision of 90-93% for the Disease Ontology annotations and 48-64% for the Gene Ontology annotations. We further demonstrate that this data set can systematically improve the results from gene set enrichment analyses.</p> <p>Conclusions</p> <p>The Gene Wiki is a rapidly growing corpus of text focused on human gene function. Here, we demonstrate that the Gene Wiki can be a powerful resource for generating ontology-based gene annotations. These annotations can be used immediately to improve workflows for building curated gene annotation databases and knowledge-based statistical analyses.</p

    MILANO – custom annotation of microarray results using automatic literature searches

    Get PDF
    BACKGROUND: High-throughput genomic research tools are becoming standard in the biologist's toolbox. After processing the genomic data with one of the many available statistical algorithms to identify statistically significant genes, these genes need to be further analyzed for biological significance in light of all the existing knowledge. Literature mining – the process of representing literature data in a fashion that is easy to relate to genomic data – is one solution to this problem. RESULTS: We present a web-based tool, MILANO (Microarray Literature-based Annotation), that allows annotation of lists of genes derived from microarray results by user defined terms. Our annotation strategy is based on counting the number of literature co-occurrences of each gene on the list with a user defined term. This strategy allows the customization of the annotation procedure and thus overcomes one of the major limitations of the functional annotations usually provided with microarray results. MILANO expands the gene names to include all their informative synonyms while filtering out gene symbols that are likely to be less informative as literature searching terms. MILANO supports searching two literature databases: GeneRIF and Medline (through PubMed), allowing retrieval of both quick and comprehensive results. We demonstrate MILANO's ability to improve microarray analysis by analyzing a list of 150 genes that were affected by p53 overproduction. This analysis reveals that MILANO enables immediate identification of known p53 target genes on this list and assists in sorting the list into genes known to be involved in p53 related pathways, apoptosis and cell cycle arrest. CONCLUSIONS: MILANO provides a useful tool for the automatic custom annotation of microarray results which is based on all the available literature. MILANO has two major advances over similar tools: the ability to expand gene names to include all their informative synonyms while removing synonyms that are not informative and access to the GeneRIF database which provides short summaries of curated articles relevant to known genes. MILANO is available at

    GOAnnotator: linking protein GO annotations to evidence text

    Get PDF
    BACKGROUND: Annotation of proteins with gene ontology (GO) terms is ongoing work and a complex task. Manual GO annotation is precise and precious, but it is time-consuming. Therefore, instead of curated annotations most of the proteins come with uncurated annotations, which have been generated automatically. Text-mining systems that use literature for automatic annotation have been proposed but they do not satisfy the high quality expectations of curators. RESULTS: In this paper we describe an approach that links uncurated annotations to text extracted from literature. The selection of the text is based on the similarity of the text to the term from the uncurated annotation. Besides substantiating the uncurated annotations, the extracted texts also lead to novel annotations. In addition, the approach uses the GO hierarchy to achieve high precision. Our approach is integrated into GOAnnotator, a tool that assists the curation process for GO annotation of UniProt proteins. CONCLUSION: The GO curators assessed GOAnnotator with a set of 66 distinct UniProt/SwissProt proteins with uncurated annotations. GOAnnotator provided correct evidence text at 93% precision. This high precision results from using the GO hierarchy to only select GO terms similar to GO terms from uncurated annotations in GOA. Our approach is the first one to achieve high precision, which is crucial for the efficient support of GO curators. GOAnnotator was implemented as a web tool that is freely available at

    GCell A Sub-Cellular Localization Tool

    Get PDF
    Submitted to the faculty of the University Graduate School In partial fulfillment of the requirements For the degree Master of Sciences In the School of Informatics, Indiana University August, 2005The aim of this thesis is to develop a biological database mining tool that incorporates mining of various publicly available heterogeneous databases and provides researchers with a reporting and visualization tool for sub-cellular localization of genes and proteins. Although there is little conservation of the primary structure, the general physiochemical properties are conserved to some extent among proteins that share sub-cellular location. Hence, the function of a protein is closely correlated with its sub-cellular location. Data in the field of genomics and proteomics are detailed, complex, and voluminous and distributed in heterogeneous databases. Most of the earlier work in information extraction from biological databases focused on database integration using wrapper techniques. However, little work has been done to mine specific data leading to the identification of pathway information and evolutionary relationship from heterogeneous biological databases. The need to develop an interactive information visualization tool leading to biological pathway detection for genes by using controlled vocabulary and various publicly available biological databases has led to the concept and implementation of GCell. This system provides a researcher to move from raw text data at a broader level to a much more detailed view of pathways representing complex biological interactions
    corecore