16,868 research outputs found

    Residual Weighted Learning for Estimating Individualized Treatment Rules

    Full text link
    Personalized medicine has received increasing attention among statisticians, computer scientists, and clinical practitioners. A major component of personalized medicine is the estimation of individualized treatment rules (ITRs). Recently, Zhao et al. (2012) proposed outcome weighted learning (OWL) to construct ITRs that directly optimize the clinical outcome. Although OWL opens the door to introducing machine learning techniques to optimal treatment regimes, it still has some problems in performance. In this article, we propose a general framework, called Residual Weighted Learning (RWL), to improve finite sample performance. Unlike OWL which weights misclassification errors by clinical outcomes, RWL weights these errors by residuals of the outcome from a regression fit on clinical covariates excluding treatment assignment. We utilize the smoothed ramp loss function in RWL, and provide a difference of convex (d.c.) algorithm to solve the corresponding non-convex optimization problem. By estimating residuals with linear models or generalized linear models, RWL can effectively deal with different types of outcomes, such as continuous, binary and count outcomes. We also propose variable selection methods for linear and nonlinear rules, respectively, to further improve the performance. We show that the resulting estimator of the treatment rule is consistent. We further obtain a rate of convergence for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed RWL methods is illustrated in simulation studies and in an analysis of cystic fibrosis clinical trial data.Comment: 48 pages, 3 figure

    An MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automati c Prognosis of MCI Patients

    Get PDF
    Alzheimer's disease (AD) and mild cognitive impairment (MCI), continue to be widely studied. While there is no consensus on whether MCIs actually "convert" to AD, the more important question is not whether MCIs convert, but what is the best such definition. We focus on automatic prognostication, nominally using only a baseline image brain scan, of whether an MCI individual will convert to AD within a multi-year period following the initial clinical visit. This is in fact not a traditional supervised learning problem since, in ADNI, there are no definitive labeled examples of MCI conversion. Prior works have defined MCI subclasses based on whether or not clinical/cognitive scores such as CDR significantly change from baseline. There are concerns with these definitions, however, since e.g. most MCIs (and ADs) do not change from a baseline CDR=0.5, even while physiological changes may be occurring. These works ignore rich phenotypical information in an MCI patient's brain scan and labeled AD and Control examples, in defining conversion. We propose an innovative conversion definition, wherein an MCI patient is declared to be a converter if any of the patient's brain scans (at follow-up visits) are classified "AD" by an (accurately-designed) Control-AD classifier. This novel definition bootstraps the design of a second classifier, specifically trained to predict whether or not MCIs will convert. This second classifier thus predicts whether an AD-Control classifier will predict that a patient has AD. Our results demonstrate this new definition leads not only to much higher prognostic accuracy than by-CDR conversion, but also to subpopulations much more consistent with known AD brain region biomarkers. We also identify key prognostic region biomarkers, essential for accurately discriminating the converter and nonconverter groups

    Doubly Optimized Calibrated Support Vector Machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration.

    Get PDF
    Historically, probabilistic models for decision support have focused on discrimination, e.g., minimizing the ranking error of predicted outcomes. Unfortunately, these models ignore another important aspect, calibration, which indicates the magnitude of correctness of model predictions. Using discrimination and calibration simultaneously can be helpful for many clinical decisions. We investigated tradeoffs between these goals, and developed a unified maximum-margin method to handle them jointly. Our approach called, Doubly Optimized Calibrated Support Vector Machine (DOC-SVM), concurrently optimizes two loss functions: the ridge regression loss and the hinge loss. Experiments using three breast cancer gene-expression datasets (i.e., GSE2034, GSE2990, and Chanrion's datasets) showed that our model generated more calibrated outputs when compared to other state-of-the-art models like Support Vector Machine (p=0.03, p=0.13, and p<0.001) and Logistic Regression (p=0.006, p=0.008, and p<0.001). DOC-SVM also demonstrated better discrimination (i.e., higher AUCs) when compared to Support Vector Machine (p=0.38, p=0.29, and p=0.047) and Logistic Regression (p=0.38, p=0.04, and p<0.0001). DOC-SVM produced a model that was better calibrated without sacrificing discrimination, and hence may be helpful in clinical decision making
    • …
    corecore