2,500,895 research outputs found

    Bootstraping financial time series

    Get PDF
    It is well known that time series of returns are characterized by volatility clustering and excess kurtosis. Therefore, when modelling the dynamic behavior of returns, inference and prediction methods, based on independent and/or Gaussian observations may be inadequate. As bootstrap methods are not, in general, based on any particular assumption on the distribution of the data, they are well suited for the analysis of returns. This paper reviews the application of bootstrap procedures for inference and prediction of financial time series. In relation to inference, bootstrap techniques have been applied to obtain the sample distribution of statistics for testing, for example, autoregressive dynamics in the conditional mean and variance, unit roots in the mean, fractional integration in volatility and the predictive ability of technical trading rules. On the other hand, bootstrap procedures have been used to estimate the distribution of returns which is of interest, for example, for Value at Risk (VaR) models or for prediction purposes. Although the application of bootstrap techniques to the empirical analysis of financial time series is very broad, there are few analytical results on the statistical properties of these techniques when applied to heteroscedastic time series. Furthermore, there are quite a few papers where the bootstrap procedures used are not adequate.Publicad

    From turbulence to financial time series

    Full text link
    We develop a framework especially suited to the autocorrelation properties observed in financial times series, by borrowing from the physical picture of turbulence. The success of our approach as applied to high frequency foreign exchange data is demonstrated by the overlap of the curves in Figure (1), since we are able to provide an analytical derivation of the relative sizes of the quantities depicted. These quantities include departures from Gaussian probability density functions and various two and three-point autocorrelation functions.Comment: 10 pages, 1 figure, LaTeX, version to appear in Physica

    Correlation filtering in financial time series

    Full text link
    We apply a method to filter relevant information from the correlation coefficient matrix by extracting a network of relevant interactions. This method succeeds to generate networks with the same hierarchical structure of the Minimum Spanning Tree but containing a larger amount of links resulting in a richer network topology allowing loops and cliques. In Tumminello et al. \cite{TumminielloPNAS05}, we have shown that this method, applied to a financial portfolio of 100 stocks in the USA equity markets, is pretty efficient in filtering relevant information about the clustering of the system and its hierarchical structure both on the whole system and within each cluster. In particular, we have found that triangular loops and 4 element cliques have important and significant relations with the market structure and properties. Here we apply this filtering procedure to the analysis of correlation in two different kind of interest rate time series (16 Eurodollars and 34 US interest rates).Comment: 10 pages 7 figure

    Scale invariance in financial time series

    Get PDF
    We focus on new insights of scale invariance and scaling properties usefully applied in the framework of a statistical approach to study the empirical finance. Two stock returns of Sri Lankan stock market indices All Share Price Index and Milanka Price Index index were considered. Central parts of the probability distribution function of returns are well fitted by the Lorentzian distribution function. However, tail parts of the probability distribution function follow a power law asymptotic behavior. We found that the probability distribution function of returns for both All Share Price Index and Milanka Price Index , is outside the L´evy stable distribution. Sri Lankan stock market is not described by the random Gaussian stochastic processes.

    Multiscaled Cross-Correlation Dynamics in Financial Time-Series

    Get PDF
    The cross correlation matrix between equities comprises multiple interactions between traders with varying strategies and time horizons. In this paper, we use the Maximum Overlap Discrete Wavelet Transform to calculate correlation matrices over different timescales and then explore the eigenvalue spectrum over sliding time windows. The dynamics of the eigenvalue spectrum at different times and scales provides insight into the interactions between the numerous constituents involved. Eigenvalue dynamics are examined for both medium and high-frequency equity returns, with the associated correlation structure shown to be dependent on both time and scale. Additionally, the Epps effect is established using this multivariate method and analyzed at longer scales than previously studied. A partition of the eigenvalue time-series demonstrates, at very short scales, the emergence of negative returns when the largest eigenvalue is greatest. Finally, a portfolio optimization shows the importance of timescale information in the context of risk management
    corecore