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Abstract. It is well known that time series of returns are characterized by
volatility clustering and excess kurtosis. Therefore, when modelling the dynamic
behavior of returns, inference and prediction methods, based on independent
and=or Gaussian observations may be inadequate. As bootstrap methods are not,
in general, based on any particular assumption on the distribution of the data,
they are well suited for the analysis of returns. This paper reviews the application
of bootstrap procedures for inference and prediction of financial time series. In
relation to inference, bootstrap techniques have been applied to obtain the sample
distribution of statistics for testing, for example, autoregressive dynamics in the
conditional mean and variance, unit roots in the mean, fractional integration in
volatility and the predictive ability of technical trading rules. On the other hand,
bootstrap procedures have been used to estimate the distribution of returns which
is of interest, for example, for Value at Risk (VaR) models or for prediction
purposes. Although the application of bootstrap techniques to the empirical
analysis of financial time series is very broad, there are few analytical results on
the statistical properties of these techniques when applied to heteroscedastic time
series. Furthermore, there are quite a few papers where the bootstrap procedures
used are not adequate.
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1. Introduction

High frequency time series of returns are often characterized by having excess
kurtosis and autocorrelated squared observations. These stylized facts can be
explained by the presence of conditional heteroscedasticity, i.e. the volatility of
returns evolves over time. Given that the marginal distribution of returns is
usually non-Gaussian, the inference and prediction of models fitted to returns
should not rely on methods based on Gaussianity assumptions. However,
bootstrap methods can be adequate in this context; see Korajczyk (1985) for one
of the earliest applications of bootstrap methods to analyze financial problems.
Many of the earlier papers using bootstrap methods in finance, use procedures
based on resampling directly from observed returns without taking into account
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that returns are sometimes correlated and often not independent. Given that the
basic bootstrap techniques were originally developed for independent observa-
tions, the bootstrap inference has not the desired properties when applied to raw
returns; see, for example, Bookstaber and McDonald (1987), Chatterjee and Pari
(1990), Hsieh and Miller (1990) and Levich and Thomas (1993) for some
applications where returns are directly bootstrapped.
The application of bootstrap methods in finance has been previously reviewed

by Maddala and Li (1996) who pointed out these shortcomings in some of the
applications. To take into account the dynamic dependence of returns and, in
particular, the conditional heteroscedasticity, there are two possible bootstrap
alternatives. First, it is possible to assume a particular model for the volatility and
to resample from the returns standardized using the estimated conditional
standard deviations. If the volatility is correctly specified, these standardized
returns are asymptotically independent and, consequently, the bootstrap
procedure has the usual asymptotic properties. Alternatively, the bootstrap
procedure can be adapted to take into account that the observations are
dependent without assuming a particular model as, for example, in the block
bootstrap method.
The objective of this paper is to review the use of bootstrap methods in the

analysis of financial time series. In general, these techniques can be used for two
objectives. First of all, it is possible to estimate the distribution of an estimator
or test statistic. Secondly, it is possible to estimate directly the probability
distribution of returns. The paper is organized as follows. In Section 2, we briefly
describe the main bootstrap procedures for time series. Section 3 reviews the
application of bootstrap procedures for inference in financial models. The main
application of bootstrap techniques in this context is to analyze the predictive
ability of technical trading rules. In Section 4, we describe several studies that
apply bootstrap methods to obtain the distribution function of returns that is
fundamental in prediction and Value at Risk (VaR) models. Finally, Section 5
contains the conclusions.

2. Bootstrap techniques for time series

The bootstrap, introduced by Efron (1979), appeared originally as a procedure to
measure the accuracy of an estimator. Its main attraction relies on the fact that it
can approximate the sampling distribution of the estimator of interest even when
this is very difficult or impossible to obtain analytically and only an asymptotic
approximation is available. Even more, the bootstrap has the advantage that is
very easy to apply independently of the complexity of the statistic of interest.
To illustrate the bootstrap methodology, let us consider one of the most

common situations found in statistics. Let x¼ (x1; x2; :::; xn) be a set of n
independent and identically distributed (iid) observations with distribution
function F, and let �¼ s(F ) be the unknown parameter to be estimated. Given
that the empirical distribution function Fn is a good approximation of the true but
unknown distribution F, a natural estimator for � is �̂�¼ s(Fn). However,
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knowledge of the sampling distribution of the estimator or at least its mean and
variance is only possible in very simple situations and, usually, the asymptotic
distribution is used to approximate it. Furthermore, the standard errors are useful
for summarizing the precision of estimates when the distribution is symmetric.
However, when the estimator has a severely skewed finite sample distribution,
bootstrap interval estimates summarize better the distribution. The bootstrap
methodology allows an approximation of the distribution of �̂� under very general
conditions and it is based on obtaining a bootstrap replicate, x*1; x*2; :::; x*n; of
the available data set x1; x2; :::; xn, by drawing with replacement random
samples from Fn. Once B bootstrap replicates of the original data set, with the
corresponding B bootstrap realizations of the parameter of interest �̂�*i , i¼ 1; :::; B,
have been obtained, the resampling distribution of the bootstrap statistic �* is
used to approximate the distribution of �̂�. Obviously, the bigger the value of B, the
better is the Monte Carlo approximation of �*, with the only price of larger
computational cost; see Efron and Tibshirany (1993) and Shao and Tu (1995).
With respect to the asymptotic validity of the bootstrap procedure, it is usual to

prove that some distance, usually the Mallows distance, between the bootstrap
distribution of �* and the sampling distribution of �̂� goes to zero as the sample
size increases to infinity. Under some circumstances, the bootstrap distribution
enables us to make more accurate inferences than the asymptotic approximation.
The bootstrap method just described is the simplest version and is only valid

in the case of iid observations. If the standard bootstrap is applied directly to
dependent observations, the resampled data will not preserve the properties of
the original data set, providing inconsistent statistical results. In particular, the
standard bootstrap procedure is neither consistent nor asymptotically unbiased
under heteroscedasticity; see Wu (1986) in the context of regression models.
Recently, several parametric and nonparametric bootstrap methods have been
developed for time series data. The parametric methods are based on assuming a
specific model for the data. After estimating the model by a consistent method,
the residuals are bootstrapped; see Freedman and Peters (1984) and Efron and
Tibshirani (1986). If the serial dependence of the data is misspecified, the
parametric bootstrap could be inconsistent. Consequently, alternative ap-
proaches that do not require fitting a parametric model have been developed
to deal with dependent time series data. Kunsch (1989) proposed the moving
block bootstrap method that divide the data into overlapping blocks of fixed
length and resample with replacement from these blocks. The bootstrap
replicates generated by the moving block method are not stationary even if
the original series is stationary. For this reason, Politis and Romano (1994)
suggest the stationary bootstrap method that resamples from blocks of data with
random lengths. In the context of heteroscedastic time series, Wu (1986)
proposed a weighted or wild bootstrap method that provides a consistent
estimate of the variance of a test statistic in the presence of heteroscedasticity.
The wild bootstrap is based on weighting each original observation with random
draws with replacement from a standard normal distribution. Malliaropulos and
Priestley (1999) propose a nonparametric implementation of this method that

BOOTSTRAPPING FINANCIAL TIME SERIES 273

# Blackwell Publishers Ltd. 2002



does not rely on the normal distribution. Hafner and Herwartz (2000) also use
another alternative version of this procedure.
Li and Maddala (1996) and Berkowitz and Kilian (2000) review the most

relevant developments in bootstrapping time series models, and show that the
bootstrap algorithms that make use of some parametric assumptions about the
model appropriate for the data, are preferable in many applications in time series
econometrics.
With respect to testing a given null hypothesis, H0, it is fundamental to

bootstrap from the correct model. In the case of time series data, it is usually
not recommended to bootstrap from the raw data but from the residuals from a
given model. However, it is necessary to decide which are the residuals to be
bootstrapped. Consider, for example, the following AR(1) model:

yt ¼ �yt 1 þ ut

and the null hypothesis H0: �¼ �0. In this case, we have mainly two alternative
series of residuals from the following models:

a) yt ¼ �̂�yt 1 þ ûut

b) yt ¼ �0yt 1 þ ~uut

Denote by ûu*t the residuals resampled from ûut and by ~uu*t, the residuals resampled
from ~uut. Then, it is possible to obtain bootstrap replicates of the variable yt by one
of the following schemes:

i) y*t ¼ �̂�y*t 1 þ ûu*t

ii) y*t ¼ �0y*t 1 þ ûu*t

iii) y*t ¼ �0y*t 1 þ ~uu*t

Although, the third scheme is the most appropriate for hypothesis testing, the
other two alternatives have also been used in practice. For example, Hall and
Wilson (1991) provide guidelines for hypothesis testing using the first alternative
while Ferreti and Romo (1996) consider the second one to test for unit roots.
Bootstrap based methods can also be used to obtain prediction densities and

intervals for future values of a given variable without making distributional
assumptions on the innovations and, at the same time, allowing the introduction,
into the estimated prediction densities, of the variability due to parameter
estimation. The most influential bootstrap procedure to construct prediction
intervals for future values of time series generated by linear AR(p) models, is due to
Thombs and Schucany (1990). This method needs the backward representation of
the autoregressive model to generate bootstrap series that mimic the structure of the
original data, keeping fixed the last p observations in all bootstrap replicates. The
use of the backward representation to generate bootstrap series makes the method
computationally expensive and, what is more important, restricts its applicability
exclusively to those models having a backward representation, excluding, for
example, the Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
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class of models. Furthermore, the prediction in models with a moving average
component is not possible with this methodology since, at least theoretically, the
whole sample should be kept fixed when generating bootstrap replicates because of
the infinite order of the corresponding autoregressive representation. Cao et al.
(1997) present an alternative bootstrap method that does no require the backward
representation. However, the corresponding prediction intervals do not incorporate
the uncertainty due to parameter estimation as they are conditional on parameter
estimates.
To overcome these drawbacks, Pascual et al. (1998) propose a new bootstrap

strategy to obtain prediction densities for general ARIMA models. With this
new methodology it is possible to incorporate the variability due to parameter
estimation into the prediction densities without requiring the backward
representation of the process. Therefore, the procedure is very flexible and easy
to use, and what is more important, can be extended and adapted easily to
processes without a backward representation and, in particular, to GARCH
processes. Finally, Gospodinov (2002) analyses the prediction accuracy of another
bootstrap procedure to compute the median unbiased forecast of near-integrated
autoregressive processes. He illustrates the properties of this procedure analyzing
one-month U.S. T-bill yields which are highly persistent although the presence of
an exact unit root is inconsistent with the bond pricing theory. This procedure is
also based on the use of the backward representation and could be modified along
the lines of the procedure suggested by Pascual et al. (1998).
In a recent essay on bootstrap techniques, Horowitz (2001) points out that

bootstrap methods for time series data are less well developed than methods
for iid observations and that important research remains to be done. This fact is
even more clear when looking at applications of bootstrap procedures to data
generated by non-linear models and, in particular, by GARCH and Stochastic
Volatility (SV) models.

3. Inference

In this section, we describe several applications of bootstrap procedures to analyze
the dynamic properties of financial returns that appear after the review of
Maddala and Li (1996). First, we consider tests related with the dynamic behavior
of the conditional mean of returns. Then we review the papers where bootstrap
procedures have been applied to test for dynamics in the conditional variance.
One of the areas where bootstrap techniques have been widely applied is to test for
the superiority of technical trading rules and we dedicate one separate subsection
to inference on trading rules. Finally, we present other applications of bootstrap
procedures to financial time series.

3.1. Testing for dynamics in the conditional mean of returns

In this subsection, we review the papers using bootstrap procedures to test for the
dynamic components in the conditional mean of returns. Numerous studies have
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found that daily stock market returns exhibit positive low-serial correlation that is
often attributed to non-synchronous trading effects. Consequently, there is great
interest in testing for the presence of such autoregressive dynamics in returns.
For example, Malliaropulos (1996) apply the variance ratio test, proposed by
Cochrane (1988), to monthly observations of the FT-A All Share index and Pan et
al. (1997) to currency futures prices. The latter authors use both the asymptotic
standard errors and bootstrap p-values for the test and conclude that the results
are similar. However, it is important to notice that both Malliaropulos (1996) and
Pan et al. (1997) bootstrap directly from the raw returns that, as mentioned in the
introduction, are not independent, although they are uncorrelated under the null
hypothesis. Therefore, the bootstrap p-values may be inappropriate. To solve this
problem, Malliaropulos and Priestley (1999) obtain the finite sample distribution
of the variance ratio test using the weighted bootstrap method. They apply the
variance ratio test to unexpected excess returns of several South Asian stock
markets after accounting for time-varying risk and potential partial integration of
the local stock market into the world stock market. It is concluded that, although
excess returns exhibit mean reversion in a number of markets, the failure to reject
the random walk hypothesis is related to mean-reversion of expected returns
rather than to market inefficiency. Alternatively, Politis, et al. (1997) propose a
subsampling method to test the null hypothesis of uncorrelated returns by means
of the variance ratio test. This method has the advantage that it works for
dependent and heteroscedastic returns.
To illustrate the effect of the presence of conditional heteroscedasticity on the

bootstrap densities of the variance ratio test, 1000 series have been simulated by
the following GARCH(1, 1) model

yt ¼ "t�t; t¼ 1; :::; T

�2t ¼ 0:05þ 0:1y2
t 1 þ 0:85�2t 1

(1)

where yt represents the series of returns, i.e. yt ¼ log(pt=pt 1), pt is the stock price
at time t, �t is the volatility and "t is a white noise that has been generated by both
a Gaussian distribution and a standardized Student-t distribution with 5 degrees
of freedom. Notice that the Student-t distribution has been proposed by many
authors as the conditional distribution of returns; see, for example, Baillie and
Bollerslev (1989). Table 1 reports the Monte Carlo results on the average p-values
of the variance ratio statistic given by

VR(q)¼

XT

t¼ qþ 1
(pt � pt q))

2

XT

t¼ 2
(pt � pt 1)

2

(2)

for T=300 and T=1000 and q=2, 5, 10 and 20 when series are generated by
model (1) with "t being Gaussian. To make the comparisons simpler, the statistic
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has been standardized using its asymptotic standard deviation, as given by Lo and
McKinlay (1989) so that all the statistics are asymptotically N(0,1). In this table, it
is possible to observe that when the bootstrap is based on resampling from the raw
returns (Bootstrap 1), the asymptotic and bootstrap p-values are similar, a result
that was also reported by Pan et al. (1997). Furthermore, both the asymptotic and
bootstrap p-values exceed the corresponding empirical p-values. However, when
the bootstrap is based on the standardized returns (Bootstrap 2), the sampling and
the bootstrap distributions of the VR(q) statistic are closer.
Figures 1 and 2 represent the empirical density of the VR(q) statistic for series

generated by model (1) with "t having a Student-t distribution for T¼ 300 and
1000, respectively. These figures also represent the bootstrap densities obtained by
resampling from the raw returns (bootstrap 1) and from the returns standardized
using the estimated GARCH conditional standard deviations (bootstrap 2) for
two particular series generated by the same model. It is clear that, in the latter
case, the estimated sampling density is closer to the empirical density.
Furthermore, notice that the performance of bootstrapping without taking
into account the conditional heteroscedasticity deteriorates as the sample size
increases. Consequently, the p-values based on bootstrapping directly from the
raw returns may have important distortions. For example, for a series generated
with T¼ 1000, the statistic VR(2) is 0.838. In this case, the asymptotic p-value and
the bootstrap p-value obtained by resampling from the raw returns are nearly the
same, 0.201 and 0.209, respectively. However, bootstrap p-values obtained from
the heteroscedastic model is 0.249 that is closer to the empirical p-value of 0.271.
Notice that, once more, it is possible to observe that the asymptotic and the
bootstrap p-values based on raw returns are similar.
We now consider the empirical application of the VR statistic to test for the

presence of autoregressive components in the exchange rate of the British Pound
against the Dollar observed daily from the 1 January 1990 to 31 December 2001,
with T¼ 3040. The series of returns, yt ¼ 100 log(pt=pt 1), where pt is the

Table 1. Monte Carlo results on p values of VR(q) statistic. GARCH (1, 1) returns with
Gaussian errors

Average p values

q T Empirical Asymptotic Bootstrap 1 Bootstrap 2

2 300 0.4858 0.5183 0.5105 0.4965
1000 0.4994 0.5250 0.5120 0.5035

5 300 0.4769 0.5246 0.5195 0.4872
1000 0.4976 0.5158 0.5105 0.4935

10 300 0.4858 0.5568 0.5417 0.4958
1000 0.5026 0.5299 0.5240 0.4966

20 300 0.4881 0.5941 0.5650 0.5026
1000 0.5043 0.5468 0.5372 0.4987
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exchange rate at time t, has been plotted in Figure 3. Table 2 reports the values
of the VR(q) statistic for q¼ 2; 5; 10 and 20, together with the corresponding
asymptotic p-values and the bootstrap p-values obtained from the raw returns.
Notice that both p-values are very similar for all values of q considered. However,
the returns are not independent. Fitting a GARCH(1, 1) model, the following
estimates are obtained:

�̂�2t ¼ 0:0007
(0:0001)

þ 0:0444
(0:0047)

y2
t 1 þ 0:9443

(0:0058)
�̂�2t 1 (3)

The p-values obtained by resampling from the corresponding standardized returns
are also reported in Table 3. Observe that, these p-values are always greater than
the corresponding asymptotic p-values. Furthermore, the results of the test can be
reversed depending on which p-value is used. For example, when q¼ 10, the null
of no autocorrelation is rejected using both the asymptotic and the bootstrap p-
values based on raw returns. However, the null hypothesis is not rejected when
bootstrapping from the standardized returns.
Summarizing, we have shown with both simulated and real data that

bootstrapping raw returns in order to obtain p-values of the VR statistic when
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Figure 1. Empirical ( ) and bootstrap densities of variance ratio statistic for a series
generated by a GARCH(1, 1) model with conditional Student t distribution with 5 degrees

of freedom. T¼ 300.
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there is conditional heteroscedasticity, could seriously distort the results of the
test. Furthermore, it could be expected that the corresponding bootstrap p-values
are not very different from the asymptotic p-values. Using bootstrap procedures
appropriate for the characteristics of returns, yields p-values remarkably close to
the empirical p-values.
The variance ratio test is not the only statistic used in finance to test for

autoregressive components in the conditional mean of returns. In a very
interesting paper, Hafner and Herwartz (2000) consider two Wald tests based
on Quasi-Maximum Likelihood (QML) estimation assuming a GARCH(1, 1)
model for the conditional variance. As QML inference depends on the
specification of the variance process, they also consider tests based on Ordinary
Least Squares (OLS) estimation and a bootstrapped version of the OLS based
statistics using the wild bootstrap. The asymptotic convergence of the distribution
of the bootstrapped statistics to the asymptotic distribution of the original statistic
is proven. By means of Monte Carlo experiments, they show that the wild
bootstrap inference shows superior size properties relative to all the other tests
considered. However, the power of the bootstrap tests is low in the cases were the
volatility is highly persistent. Finally, they apply the alternative tests considered to
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Figure 2. Empirical ( ) and bootstrap densities of variance ratio statistic for a series
generated by a GARCH(1, 1) model with conditional Student t distribution with 5 degrees

of freedom. T¼ 1000.
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German stock returns, giving in many cases different decisions about acceptance
or rejection of the null hypothesis of no autocorrelation.
White and Racine (2001) also test for predictable components in returns by

applying bootstrap techniques for inference in artificial neural networks (ANN).
They conclude that exchange rates do appear to contain information that is
exploitable for enhanced point prediction, but the nature of the predictive relation
evolves over time. However, they do not take into account the evolution of the
conditional variance.
In relation to testing for the presence of unit roots in exchange rates, Kanas

(1998) investigates whether the Dickey-Fuller (DF) test is affected by the presence

Table 2. VR(q) statistic and p values for British Pound Dollar exchange rate.

p values

q Statistic Asymptotic Bootstrap 1 Bootstrap 2

2 3.0438 0.0012 0.0020 0.0070

5 2.5821 0.0049 0.009 0.0360

10 1.9790 0.0239 0.0270 0.0510

20 1.3291 0.0919 0.0960 0.1310
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Figure 3. Daily returns of Pound Dollar exchange rate observed from 1 January 1990 to
31 December 2001.
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Table 3. Summary of recent bootstrap applications testing for dynamics of returns.

Author Test for Boot. procedure Results

Conditional mean

Malliaropulos (1996) Autocor. of returns Raw returns Not take into account heteros.
Pan et al. (1997) Autocor. of returns Raw returns Not take into account heteros.
Kanas (1998) Unit root in prices
Mallia. and Priest. (1999) Autocor. of returns Weighted boot. Mean reversion is due to time varying expected returns and

partial integration
Politis et al. (1999) Autocor. of returns Subsampling Asymptotic properties
Gospodinov (2000) Non linearities Standard. returns Finite sample properties

Wild Bootstrap
Feasible GLS Boot

Specifies a TAR model with GARCH errors

Hafner and Herwa. (2000) Autocor. of returns Wild bootstrap Boots. test have good size and power properties
White and Racine (2001) Predictable regularities

in exchange rates
Raw returns Not take into account heteros.

Conditional variance

Tauchen et al. (1996) Persistence
Asymmetry
Relation vol. prices

Sampling from
fitted conditional
density

Dynamic impulse response analysis

Brock. and Chow. (1997) Chaos Raw returns Not take into account heteros.
Bollers. and Mikk. (1999) Fractional integration Standard. returns Best model: FIEGARCH
Blake and Kapet. (2000) ARCH Raw returns Artificial neural network

Under the null is appropriate
Eftekhari et al. (2000) Measures of risk Raw returns Monthly data (homoscedastic)
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Table 3. Continued.

Author Test for Boot. procedure Results

Technical trading rules

Brock et al. (1992) Performance of TTR Standard. returns TTR are profitable
Kho (1996) Performance of TTR Standard. returns Different conclusions with standard and bootstrap tests
Mills (1997) Performance of TTR Standard. returns Predictability dissapears after 1980
Besse. and Chan (1998) Performance of TTR Raw returns Not take into account heteros.
Ito (1999) Performance of TTR Standard. returns Importance of time varying expected returns
LeBaron (1999) Performance of TTR Raw returns Effect of Federal Reserve

Not take into account heteros.
White (1999) Performance of TTR Stationary boot. Avoid data snooping
Sullivan et al. (1999) Performance of TTR Stationary boot. Outperformance disappears out of sample
Chang and Osler (1999) Performance of TTR Raw returns Not take into account heteros
Millet and Michel (2000) Performance of TTR Raw returns Not take into account heteros
Taylor (2000) Performance of TTR Standard. returns Test based on TTR have less power than standard

uncorrelation tests

Other applications

Ikenberry et al. (1995) Event study Long run returns are not zero
Kothari and Warner (1997) Event study Parametric long horizon tests can be missleading
Stanton (1997) Term structure Block boot. Continuous time
Garrant et al. (2001) Target zone

nonlinearities
Block boot. Nonlinearities in specific subsamples

Carriere (2000) Forward rates Block boot. Uses splines
Groene. and Fraser (2001a) Asset Pricing model Block boot. Monthly data (homosced.)
Groene. and Fraser (2001b) Asset Pricing model Block boot. Monthly data (homosced.)
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of structural breaks due to realignments in the central parities. Bootstrap
simulations are used to generate critical values of the DF test in the presence
of multiple dummy variables. He concludes that, once you take into account
the realignments, there is no evidence of the presence of unit roots in exchange
rates.
Although most of the previous authors conclude that stock returns are not

predictable in the short run, there is an interest for long horizon regressions that
usually take the following expression:

Xk

i¼ 1
ytþ i ¼ �k þ 	kxk þ utk (4)

where xt is some variable measuring fundamental values, usually dividend yield.
Maddala and Li (1996) review extensively several papers using bootstrap
techniques in this context. Ikenberry et al. (1995) also analyze the long-run
behavior of returns by means of an event study analysis. They conclude that long-
run abnormal returns are systematically nonzero. They defined the sample buy-
and-hold abnormal return as the difference between the buy-and-hold return and
the corresponding return on a portfolio of securities matched by book-to-market,
size and event date. To assess the statistical significance, this difference is
compared to a bootstrap distribution of buy-and-hold abnormal returns.
However, Kothari and Warner (1997) point out several potential shortcoming
of bootstrap techniques for long-horizon event studies.
In relation to testing for non-linearities in the conditional mean of a series in the

presence of high persistence and conditional heteroscedasticity, Gospodinov
(2000) proposes to use a Threshold Autoregressive of order one (TAR(1)) model
with GARCH(1, 1) errors which is applied to the analysis of the term structure of
interest rates. He uses bootstrap approximations to ensure the validity of the
statistical inference. In particular, he proposes three alternative bootstrap
procedures. The first one is based on bootstrapping the standardized residuals,
the second is a wild bootstrap procedure and, finally, he considers a feasible GLS
bootstrap. The size and power properties of these approximations are evaluated
by simulation and the conclusion is that all of the bootstrap tests have excellent
size properties.
Garrant et al. (2001) also test for the presence of target-zone nonlinearities in

the Pound=Deutschmark exchange rate using the block bootstrap to compute the
corresponding p-values.

3.2. Testing for dynamics in the conditional variance of returns

There are also hypothesis related to the dynamics of volatility that have been
tested using bootstrap procedures. Lamoureux and Lastrapes (1990) were the first
to use bootstrap procedures to test if the Integrated GARCH (IGARCH) models,
often found in empirical applications, can be the result of structural changes in
otherwise stationary GARCH models. However, Maddala and Li (1996) point
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out that they do not formulate correctly the null hypothesis to be tested and show
how the test should be carried out properly.
Tauchen et al. (1996) investigate multi-step nonlinear dynamics of daily

price and volume movements. Their objective is to examine the persistence
properties of stochastic volatility, the asymmetric responses of conditional
variances to positive and negative movements in prices and the nonlinear
relation between volume and prices. They construct confidence bands for the
corresponding impulse response functions by resampling from the fitted
conditional densities. The bootstrap method they used is described in Gallant
et al. (1993).
Later, Brockman and Chowdhury (1997) applied bootstrap techniques to

distinguish whether the intra-day implied volatility of the S&P100 index call
option is stochastic or has a chaotic deterministic behavior. However, they are
bootstrapping from the raw returns series that are not independent. Therefore, the
properties of the bootstrap procedure can be seriously affected.
Bollerslev and Mikkelsen (1999) analyze whether the long-run dependence in

U.S. stock market volatility is best described by a slowly mean-reverting
fractionally integrated process by inferring the degree of mean-reversion implicit
in a panel data set of transaction prices on the S&P500 composite stock price
index. They compare the observed prices with risk-neutralized prices boot-
strapped from the residuals standardized with standard deviations estimated by
different heteroscedastic models. They conclude that the Fractionally Integrated
EGARCH (FIEGARCH) model of Bollerslev and Mikkelsen (1996) results in the
lowest average absolute and relative pricing errors.
Also, in relation to testing the dynamics of volatility, Blake and Kapetanios

(2000) propose a test for ARCH based on a neural network specification. As
the test suffers from size distortions, they use bootstrap procedures to correct
them.
Finally, Eftekhari et al. (2000) compare different measures of risk, namely the

semi-variance, the lower partial moment, the Gini and the absolute deviation
using both simulated and real series of monthly returns. They draw, with
replacement, returns from each of the samples of real data and the alternative
measures of risk are calculated for each of the bootstrapped samples.

3.3. Technical trading rules

One of the most popular methods to analyze the hypothesis that equity markets
are efficient is based on technical analysis. Trading rules are used to classify each
day t as either Buy, Sell or Neutral, using information available up to day t.
Technical trading rules are rather important in practice given that they are almost
universally used by practitioners; see the references in Chang and Osler (1999). A
trading rule is said to uncover evidence of price predictability if expected returns
depend on the Buy=Sell information. To assess this dependency, it is natural to
test for the difference between the average returns for Buy and Sell days. The
obvious test of the null hypothesis that there is no predictability is based on the
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following statistic

z¼
[rI � [rJ

s2I

nI

þ
s2J

nJ

0
@

1
A

0:5

where [rI, s2I and nI are, respectively, the sample mean, variance and number of
returns for Buy days, and [rJ, s2J and nJ are the corresponding measures for Sell
days. The asymptotic distribution of the z statistic is standard normal when the
returns process is a strictly stationary, martingale difference with finite second
moments.
When several trading rules are considered, another interesting hypothesis is

whether there exists a superior technical trading rule that significantly outper-
forms a benchmark of holding cash. The null hypothesis, in this case, is that the
expected return of the best trading rule is no better than the expected return of the
benchmark.
Due to the non-normality of returns, it is sensible to use bootstrap procedures

to estimate the distribution of these statistics. In a seminal paper in this area,
Brock et al. (1992) propose to combine technical analysis and bootstrap
procedures. They proposed a bootstrap procedure to obtain a better approxima-
tion of these statistics and to decide if some specific statistical model can explain
the observed trading rules results. A statistic z is calculated from a trading rule
applied to the observed series. Then a particular statistical model is fitted to the
observed returns and artificial price series are generated by sampling from
the corresponding residuals together with the estimated parameters. The same
statistic z is computed for each of the artificial price series, obtaining a sequence of
bootstrap statistics, z*1; z*2; :::; z*B. The proportion of statistics z*i that are more
extreme than z, is the p-value for the test of the null hypothesis that the particular
model generates observed prices. They apply this bootstrap method to analyze
the properties of the Dow Jones Index observed daily from 1897 to 1986,
bootstrapping the p-values for the difference between Buy and Sell average
returns by applying 26 technical trading rules, and conclude that they significantly
outperform the benchmark. However, they explicitly mention that the asymptotic
properties of the bootstrap procedure proposed are not known for some models of
the GARCH family as, for example, EGARCH and GARCH-M. Furthermore,
they suggest that the results of the test are not qualitatively altered whether the
asymptotic or the bootstrapped standard errors are used. Finally, they note the
dangers of data-snooping when testing the profitability of a large number of
trading rules on the same sample of returns. Data-snooping occurs when a given
data set is used more than once for inference or data selection. In this case, there is
the possibility that positive results can be due simply to chance. As they are testing
26 trading rules one by one, there is a reasonable possibility that data-snooping
could be occurring. Therefore, the evidence in favor of a superior performance
of trading rules can be tempered. Finally, it should be mentioned that the
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combination of bootstrap methods with trading rules has been more fruitful as an
instrument to check the adequacy of several commonly used models like Random
Walks, GARCH and the Markov switching regression models. For this purpose,
Brock et al. (1992) propose to bootstrap the residuals from a fitted model and the
estimated parameters to obtain bootstrap replicates of the original data. They
compute the trading rule profits for each bootstrap replicate and compare the
corresponding bootstrap distribution with the trading rule profits derived from
the actual data.
The application of the procedures proposed by Brock et al. (1992) is very

extensive in the literature. For example, Mills (1997) applies their methodology to
data on the London Stock Exchange FT30 index for the period 1935–1994.
Although he found that trading rules outperform the benchmark when using data
up to 1980, the predictive ability of the trading rules after this date disappears.
Later, LeBaron (1999) tests whether the predictive ability of trading rules over
future movements of foreign exchange rates changes after removing periods in
which the Federal Reserve is active. Maillet and Michel (2000) apply the test
proposed by LeBaron (1999) to twelve exchange rates. They also use bootstrap
methods to estimate the distribution of both trading rule returns and raw returns
to analyze whether filtering the raw exchange series with some trading rule
significantly changes their characteristics. Finally, Taylor (2000) studies the
predictability of several U.K. financial prices by fitting ARMA-ARCH models to
the corresponding returns.
As noted by Brock et al. (1992), there is a danger of data-snooping when testing

one by one the performance of a high number of trading rules. To avoid it, White
(2000) applies the stationary bootstrap to test whether the performance of the best
trading rule is no better than the benchmark. Later, Sullivan et al. (1999) apply
White’s (2000) bootstrap methodology to present a comprehensive test of
performance across several technical rules. They show that, even after adjustments
for data-snooping, some of the trading rules considered by Brock et al. (1992)
outperform the benchmark. However, their results do not hold out-of-sample.
However, even after Maddala and Li (1996) highlighted the dangers of

bootstrapping from raw returns, there are some authors who still do not take into
account the presence of conditional heteroscedasticity when using bootstrap
procedures to analyze the profitability of technical trading rules; see, for example,
Bessembinder and Chan (1998) and Chang and Osler (1999).
Kho (1996) analyses the performance of trading rules on currency futures

markets using an alternative procedure to the one proposed by Brock et al. (1992).
He applies a bootstrap procedure based on observations standardized assuming
a GARCH-M specification, to some versions of the conditional international
Capital Asset Pricing Model (CAPM) for time-varying expected returns and risk.
Subsequently, Ito (1999) evaluates the profitability of technical trading rules by
using equilibrium asset pricing models. He found that using standard or bootstrap
p-values, the conclusions can be reversed.
Finally, the Contrarian Hypothesis, also related to trading rules, states that

stocks that consistently underperform (outperform) the market will outperform
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(underperform) over subsequent periods, those stocks that have previously
outperformed (underperformed) the market. In two closely related papers, Mum
et al. (1999, 2000), use exactly the same methodology to test this hypothesis for
French and German stock markets in the first paper, and for US and Canadian
stock markets in the second. The bootstrap procedure they use, however, is
not appropriate, in the main because they are not resampling under the null
hypothesis, but also because it is hard to believe that it is really a bootstrap
procedure.

3.4. Other tests

There are other applications of bootstrap procedures to hypothesis testing
related to financial data. For example, Stanton (1997) estimates non-
parametrically the parameters of continuous time diffusion processes that are
observed at discrete times using kernel estimators of the corresponding
conditional expectations. He uses the block bootstrap to calculate confidence
bands for the estimated densities.
Later, Carriere (2000) constructs confidence intervals for forward rates

estimated with spline models that take into account the heteroscedasticity and
correlation in the data. They resample from the residuals standardized to have
constant variance and no autocorrelation.
Finally, in two very closely related papers, Groenewold and Fraser (2001a,b)

analyze the sensitivity of tests of asset-pricing models to violations of the
Gaussianity hypothesis. In the former paper, they use Australian data and in the
latter, US and UK data, to compare the standard test with those based on GMM
estimators and on bootstrap procedures. They conclude that standard methods
are robust to Gaussianity. However, their results have two limitations. First,
although they mention three alternative bootstrap procedures, the standard
procedure based on resampling directly from the returns, a block bootstrap and a
parametric bootstrap based on fitting a model for the conditional variance, the
first is inappropriate and they do not implement the third. Therefore, only
the block bootstrap may have the desired properties. The second limitation is
concerned with the properties of the data they analyze, namely the observations
are monthly and the presence of conditional heteroscedasticity is very weak.
Therefore, it is not surprising that the results based on the bootstrap or on
standard asymptotic distributions are similar.
Table 3 summarizes the main contributions described in this section.

4. Distribution of returns and volatilities

Bootstrap procedures can be used not only to estimate the sample distribution of a
given statistic but also to obtain estimates of the density of the variable being
analyzed. In this section, we review the papers that apply bootstrap procedures to
obtain prediction densities of future returns and their volatilities and to estimate
the VaR.

BOOTSTRAPPING FINANCIAL TIME SERIES 287

# Blackwell Publishers Ltd. 2002



4.1. Prediction

Prediction is one of the main goals when a dynamic model is fitted to returns. In
that sense, GARCH and SV models have the attraction that they can provide
dynamic prediction intervals that are narrow in tranquil times and wide in volatile
periods. Furthermore, there is an increasing interest in interval forecasts as
measures of uncertainty; see, for example, Bollerslev (2001) and Engle (2001). On
the other hand, the volatility of returns is a key factor in many models of option
valuation and portfolio allocation problems. Therefore, accurate predictions of
volatilities are critical for the implementation and evaluation of asset and
derivative pricing theories, as well as trading and hedging strategies. Bootstrap-
based methods lead to prediction intervals that incorporate the uncertainty due
to parameter estimation without distributional assumptions on the sequence of
innovations. As described in Section 2, these methods have proved to be very
useful for obtaining prediction intervals for future values of series generated by
linear ARIMA models. However, if the presence of conditional heteroscedasticity
is not taken into account, the coverage properties of bootstrap intervals for high
frequency returns can be distorted; see, for example, Kim (2001) in the context of
VAR(1) models. Consequently, Miguel and Olave (1999a) extend the procedure of
Cao et al. (1997) to stationary ARMA processes with GARCH(1, 1) innovations
and prove the asymptotic validity of the corresponding bootstrap procedure
to obtain prediction intervals for future returns. These prediction intervals are
conditional on the parameter estimates and, consequently, do not incorporate the
uncertainty due to parameter estimation. As volatility is specified as a function of
past observations in GARCH models, future volatilities are known given the
parameters and past observations. As a consequence, the bootstrap procedure
proposed by Miguel and Olave (1999a) cannot be used to obtain prediction
intervals for future volatilities. Miguel and Olave (1999b) carry out a Monte Carlo
experiment to compare the performance of the conditional bootstrap intervals
with the Cornish-Fisher approximation proposed by Baillie and Bollerslev (1992).
They show that when the prediction horizon is longer than one period, the
bootstrap prediction intervals have coverages closer to the nominal than the
intervals based on Cornish-Fisher approximations. Gospodinov (2002) also
proposes an alternative bootstrap procedure conditional on parameter estimates
to forecast future returns modeled by a TAR(1) model with GARCH(1, 1) errors.
Pascual et al. (2000) generalize the bootstrap procedure of Pascual et al. (1998)

to obtain prediction densities of both returns and volatilities of series generated by
GARCH processes. The main advantage of their proposal is that the procedure
incorporates the variability due to parameter estimation and, therefore, it is
possible to obtain bootstrap prediction densities for the volatility process. The
asymptotic properties of the procedure are derived and the finite sample
properties are analyzed by means of Monte Carlo experiments which show that
the properties of intervals for future returns are adequate. They also show that
incorporating the uncertainty due to parameter estimation makes no difference
when generating prediction intervals for returns if the error distribution is

288 RUIZ AND PASCUAL

# Blackwell Publishers Ltd. 2002



symmetric. However, when constructing prediction intervals for future volatilities,
it is necessary to introduce this uncertainty to have coverage close to the nominal
values. However, the length of intervals for future volatilities is well above
the empirical values. Finally, they apply their bootstrap procedure to obtain
prediction densities of future values and volatilities of the IBEX35 index of the
Madrid Stock Exchange.
To illustrate the use of the bootstrap to obtain prediction densities for future

returns and volatilities, the procedure proposed by Pascual et al. (2000) has been
applied to the series of returns of the Pound–Dollar exchange rate described in
Section 3. Although the series consists of T¼ 3039 observations, only 3019 have
been used for estimation purposes, leaving the last 20 observations for out-of-
sample forecast evaluation. Recall that the VR(q) test detects autoregressive
components in the returns series for q=2 and 5. Therefore, we fit an AR(1)
model with GARCH(1, 1) errors. The estimated model is given by

yt ¼ 0:0652
(0:0181)

yt 1 þ at

at ¼ "t�t

�̂�2t ¼ 0:0007
(0:0001)

þ 0:0443
(0:0047)

a2
t 1 þ 0:9447

(0:0058)
�̂�2t 1

(5)

Figure 4 represents a kernel estimate of the density of the standardized residuals,
"̂"t ¼ at=�̂�t, together with the standard normal density. Notice that the density of "̂"t

has fat tails. In particular, the kurtosis is 4.6711. Therefore, the conditional
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Figure 4. Kernel density of Pound Dollar exchange rate returns standardized with
GARCH(1, 1) standard deviations.
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Gaussianity of returns is rejected when a GARCH(1, 1) model is fitted. Figure 5
represents the bootstrap densities estimated for 1, 5, 10 and 20 steps-ahead
predictions of returns. Using these bootstrap densities, it is possible to construct
the corresponding prediction intervals for future returns. Figure 6 represents the
80% and 95% intervals for yTþ k, k¼ 1; :::; 20, together with the intervals
obtained using the Box-Jenkins methodology. We also plot the point predictions
that, in this case, are equal to zero and the actual values of yTþ k. Notice that
approximately 4 of 20 observations are supposed to lie out the 80% prediction
interval. However, the Box-Jenkins intervals are unnecessarily wide leaving only
one outside. While the bootstrap intervals are thinner, they leave 4 observations
outside. On the other hand, looking at the 95% intervals, they are supposed to
leave one observation out.
With respect to the prediction of future volatilities, Figure 7 represents the

bootstrap densities for different prediction horizons. The corresponding bootstrap
prediction intervals for future volatilities have been plotted in Figure 8, together
with the point predictions obtained from the estimated GARCH(1, 1) model in
equation (5).
The extension of these bootstrap procedures to estimate prediction densities of

returns and volatilities of series generated by SV models seems rather promising
in the context of predicting future volatilities. Remember that while in GARCH
models the volatility is known one-step-ahead, SV models introduce an
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Figure 5. Bootstrap densities of 1, 5, 10 and 20 steps ahead forecasts of Pound Dollar
exchange rate returns.
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Figure 6. Box Jenkins and bootstrap 80% and 95% prediction intervals for Pound Dollar
exchange rate returns together with point predictions (A) and actual values (D).
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unexpected component that could allow more realistic prediction intervals with
better coverage.

4.2. Value-at-Risk (VaR)

Financial risk management is dedicated to providing density forecasts of portfolio
values and to tracking certain aspects of the densities such as, for example, Value-
at-Risk (VaR). The VaR can be defined as the expected loss of a portfolio after a
given period of time (usually 10 days) corresponding to the �% quantile (usually
1%).
The early VaR parametric models impose a known theoretical distribution to

price changes. Usually it is assumed that the density function of risk factors
influencing asset returns is a multivariate normal distribution. The most popular
parametric methods are variance-covariance models and Monte Carlo simula-
tion. However, excess kurtosis of these factors will cause losses greater than VaR
to occur more frequently and be more extreme than those predicted by the
Gaussian distribution. Consequently, many authors suggest using bootstrap
techniques to avoid particular assumptions on the distribution of factors beyond
stationarity of the distribution of returns. The procedure consists of generating
scenarios by sampling observed returns associated with each risk factor included
in the portfolio. The aggregate value of all linear and derivative positions
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Figure 8. Bootstrap prediction intervals for future Pound Dollar exchange rates
volatilities together with their GARCH point predictions (D).
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produces a simulated portfolio value. Vlaar (2000) investigates the accuracy of
various VaR models on Dutch interest rate-based portfolios and concludes that
bootstrap techniques produce satisfactory results when long periods of data are
available.
Early bootstrap procedures to compute the VaR of a portfolio assumed

constant volatility of returns. However, the ability of bootstrap techniques to
predict future losses can be undermined when the volatility evolves over time
and, therefore the distribution of risk factors is not i.i.d.. In this case, the
probability of having a large loss is not equal across different days. Barone-
Adesi et al. (1999) propose a bootstrap procedure to obtain VaR estimates based
on resampling from returns standardized using GARCH estimates of the
volatility. The bootstrapping is done conditional on the parameter estimates
and, therefore, is similar to the one proposed by Miguel and Olave (1999a)
for obtaining prediction intervals. They illustrate the procedure with a very
informative numerical example of a portfolio of three assets. Later, Barone-
Adesi et al. (2001) compare this method with traditional bootstrapping estimates
using three hypothetical portfolios on the S&P500 index and show that the
advantages of the standardized bootstrap is magnified by the presence of options
in the portfolio.
To illustrate the different alternatives to estimate the VaR, we perform the

following experiment. We simulate 1000 series by the GARCH(1, 1) model in (1)
and compute the empirical VaR for �¼ 0:01, 0.05 and 0.1. Then for each
simulated series, we estimate the VaR by each of the following procedures:

(i) Assuming that returns are N(0; ŝs2), where ŝs2 is the sample variance.
(ii) Assuming that returns are a conditionally Gaussian GARCH(1, 1) process.
(iii) Resampling from the raw returns and estimating their density under

conditional homoscedasticity.
(iv) Resampling from the returns standardized with the GARCH estimates of

the conditional standard deviation and estimating the density conditional
on parameter estimates, as proposed by Barone-Adessi et al. (1999).

(v) Resampling from the returns standardized with the GARCH estimates of
the conditional standard deviation and estimating the density incorporat-
ing parameter uncertainty. Notice that, in this case, the procedure used to
obtain the density is the one proposed by Pascual et al. (2000).

Tables 4 and 5 report the average VaR values across all the replicates when "t in
(1) is a Student-t distribution with 5 degrees of freedom and a minus 
2

distribution with 4 degrees of freedom, respectively. In these tables we do not
report the average VaR values for the bootstrap procedure based on resampling
the standardized returns conditional on parameter estimates because they are
very similar to those obtained by incorporating the parameter uncertainty.
Pascual et al. (2000) show that whether or not the parameter uncertainty is
incorporated in intervals for returns does not have any significant effect. With
respect to the Student-t distribution, Table 4 shows that, assuming marginal
Gaussianity of returns, the VaR values obtained are well under the empirical
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values at the 0.05 and 0.1 probabilities, implying more expected losses than
actual. However, at the most common 0.01 probability, the estimated VaR is
larger than the empirical value. Therefore, the estimated loss is smaller than the
actual. The same conclusions are reached for all horizons and the problem is
not solved by increasing the sample size. Although the expected losses are
slightly closer to the empirical values, the same results are observed when a
conditionally Gaussian GARCH(1, 1) model is assumed. The estimated VaR
values are clearly improved when they are computed using bootstrap

Table 4. Monte Carlo results on VaR values using conditionally Gaussian GARCH(1, 1)
model and bootstrap methods. Student 5 distribution

Forecast
horizon

Sample
size

Average VaR values

Empirical Normal GARCH Bootstrap 1 Bootstrap 2

1 T Probability

300 10% 1.094 1.253 1.212 1.090 1.084
5% 1.497 1.616 1.563 1.534 1.499
1% 2.538 2.272 2.197 2.746 2.548

1000 10% 1.081 1.264 1.202 1.073 1.079
5% 1.478 1.630 1.549 1.504 1.477
1% 2.504 2.291 2.178 2.747 2.505

5 T Probability

300 10% 1.086 1.253 1.238 1.088 1.080
5% 1.499 1.616 1.596 1.533 1.506
1% 2.588 2.272 2.244 2.751 2.637

1000 10% 1.075 1.264 1.224 1.079 1.073
5% 1.485 1.630 1.578 1.513 1.483
1% 2.565 2.291 2.218 2.755 2.592

10 T Probability

300 10% 1.083 1.253 1.257 1.085 1.078
5% 1.508 1.616 1.621 1.530 1.509
1% 2.656 2.272 2.278 2.768 2.673

1000 10% 1.074 1.264 1.242 1.075 1.072
5% 1.495 1.630 1.601 1.513 1.496
1% 2.630 2.291 2.251 2.769 2.654

20 T Probability

300 10% 1.079 1.253 1.278 1.086 1.074
5% 1.510 1.616 1.648 1.528 1.509
1% 2.695 2.272 2.318 2.744 2.734

1000 10% 1.074 1.264 1.264 1.078 1.069
5% 1.503 1.630 1.629 1.518 1.497
1% 2.682 2.291 2.291 2.767 2.692

294 RUIZ AND PASCUAL

# Blackwell Publishers Ltd. 2002



procedures. The expected losses when bootstrapping from the raw returns are
generally bigger than the actual losses. However, when the bootstrap is done by
resampling from the standardized returns, i.e. the presence of conditional
heteroscedasticity is taken into account, the estimated VaR’s are remarkably
close to the actual values. The bootstrap procedure performs well in estimating
the VaR.
With respect to the results for the asymmetric minus 
2 distribution, Table 5

shows that the VaR values computed assuming a marginal Gaussian distribution

Table 5. Monte Carlo results on VaR values using conditionally Gaussian GARCH(1, 1)
model and bootstrap methods. 
 2 distribution with 4 degrees of freedom

Forecast
horizon

Sample
size

Average VaR values

Empirical Normal GARCH Bootstrap 1 Bootstrap 2

1 T Probability

300 10% 1.284 1.254 1.220 1.271 1.280
5% 1.869 1.616 1.572 1.881 1.863
1% 3.178 2.272 2.211 3.323 3.140

1000 10% 1.292 1.263 1.238 1.259 1.296
5% 1.879 1.628 1.597 1.867 1.882
1% 3.195 2.289 2.245 3.375 3.200

5 T Probability

300 10% 1.278 1.254 1.242 1.272 1.272
5% 1.873 1.616 1.601 1.887 1.860
1% 3.247 2.273 2.251 3.321 3.204

1000 10% 1.283 1.263 1.255 1.260 1.282
5% 1.881 1.628 1.617 1.863 1.884
1% 3.256 2.289 2.274 3.368 3.278

10 T Probability

300 10% 1.276 1.254 1.257 1.275 1.265
5% 1.881 1.616 1.620 1.884 1.862
1% 3.332 2.273 2.278 3.305 3.260

1000 10% 1.281 1.263 1.267 1.259 1.270
5% 1.888 1.628 1.634 1.863 1.869
1% 3.341 2.289 2.297 3.376 3.330

20 T Probability

300 10% 1.252 1.254 1.274 1.275 1.253
5% 1.869 1.616 1.642 1.886 1.855
1% 3.365 2.273 2.309 3.285 3.296

1000 10% 1.265 1.262 1.281 1.256 1.257
5% 1.874 1.628 1.651 1.860 1.860
1% 3.376 2.289 2.321 3.383 3.348
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of returns are systematically bigger than the actual values. Even larger or similar
estimates are obtained when a conditionally Gaussian GARCH(1, 1) model is
assumed. Therefore, the actual losses will be, on average, bigger than the losses
predicted by both models. This problem is observed for all probabilities, forecast
horizons and sample sizes considered. On the other hand, when the bootstrap
procedures are applied, the estimated VaR’s are closer to the empirical values.
Once more, the estimated bootstrap VaR values are more accurate, specially for
the shorter horizons, when resampling from the standardized returns.
Finally, we have obtained the VaR of the Pound–Dollar exchange rate using

the normality assumption and by the procedure proposed by Pascual et al. (2000).
For �¼ 0:05 and three steps ahead, the expected loss assuming normality is
�0.3865 while the bootstrap VaR is bigger at �0.3724. On the other hand, when
�¼ 0:01, under normality the VaR is �0.5435 and the bootstrap is smaller at
�0.6108. Notice that the more important differences between both values of the
VaR appear when looking at the tails of the distribution that are the focus of
interest from the empirical point of view.
Table 6 summarizes the main contributions in this area.

Table 6. Summary of recent bootstrap applications to estimate the distribution of returns.

Author Model Boot. proced. Results

Prediction of returns

Mig. and Olav.
(1999a)

ARMA GARCH(1, 1) Stand. returns Conditional on parameter
estimates
Asymptotic validity

Mig. and Olav.
(1999b)

ARMA GARCH(1, 1) Stand. returns Conditional on parameter
estimates
Monte Carlo results

Pascual et al.
(2000)

GARCH(1, 1) Stand. returns Parameter uncertainty.
Asympt. and finite samp
properties

Gospodinov
(2002)

Highly persistent AR Raw returns Finite sample properties

Backward repr. Forecast interest rates

Prediction of volatilities

Pascual et al.
(2000)

GARCH(1, 1) Stand. returns Parameter uncertainty.
Asympt. and finite samp
properties

Value at Risk

Baro. Ad. et al.
(1999)

GARCH(1, 1) Stand. returns Conditional on parameter
estimates

Vlaar (2001) GARCH(1, 1) Raw returns Boot. satisfactory for long
series

Baro. Ad. et al.
(2001)

GARCH(1, 1) Raw returns
Stand. returns

Advantages of Stand. boot.
when there are options in
portfolio
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5. Conclusions

In this paper, we reviewed the literature on the application of bootstrap
procedures to the analysis of financial time series. We focused mainly on the
papers that have appeared after the review of Maddala and Li (1996). High
frequency financial returns are often characterized by a leptokurtic marginal
distribution of unknown form. Consequently, bootstrap methods are especially
well suited for their analysis. However, when applying these methods to the
empirical analysis of financial returns, it should be kept in mind that they were
originally designed for i.i.d. observations. Although financial returns are usually
uncorrelated, they are not independent. Volatility clustering generates correlations
between squared observations. Therefore, the bootstrap procedures should be
adapted to take into account this dependence. There are two main alternatives.
The first is to assume a parametric model for the dynamic evolution of the
volatility and to bootstrap from the returns standardized with the estimated
standard deviations. Alternatively, it is possible to adopt nonparametric bootstrap
methods designed for dependent observations as, for example, the block
bootstrap.
There are many empirical applications where bootstrap methods have been

adopted to test a great variety of null hypothesis related with financial returns as,
for example, the presence of predictable components in the conditional mean, the
long-memory property of the conditional variance, or the predictive ability of
trading rules. Bootstrap procedures have also been used to obtain the predictive
densities of future returns and volatilities, which are fundamental, for example,
for VaR models. However, there are very few analytical results on the finite
sample and asymptotic properties of the bootstrap procedures when applied to
heteroscedastic time series.
Although we focused on the application of bootstrap techniques to the analysis

of univariate financial time series, there are also multivariate applications. For
example, Engsted and Tanggaard (2001) use bootstrap procedures to compute the
bias, standard errors and confidence intervals for the parameters of VAR models
fitted to model the Danish stock and bond markets. Kim (2001) also uses
bootstrap procedures in the context of VAR models applied to financial series.
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