194,129 research outputs found

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Curriculum implementation exploratory studies: Final report

    Get PDF
    Throughout the history of schooling in New Zealand the national curriculum has been revised at fairly regular intervals. Consequently, schools are periodically faced with having to accommodate to new curriculum. In between major changes other specifically-focused changes may arise; for example, the increased recent emphasis upon numeracy and literacy

    Inclusion of an Introduction to Infrastructure Course in a Civil and Environmental Engineering Curriculum

    Get PDF
    Civil infrastructure refers to the built environment (sometimes referred to as public works) and consists of roads, bridges, buildings, dams, levees, drinking water treatment facilities, wastewater treatment facilities, power generation and transmission facilities, communications, solid waste facilities, hazardous waste facilities, and other sectors. Although there is a need to train engineers who have a holistic view of infrastructure, there is evidence that civil and environmental engineering (CEE) programs have not fully addressed this increasingly recognized need. One effective approach to address this educational gap is to incorporate a course related to infrastructure into the curriculum for first-year or second-year civil and environmental engineering students. Therefore, this study assesses the current status of teaching such courses in the United States and identifies the incentives for, and the barriers against, incorporating an introduction to infrastructure course into schools’ current CEE curricula. Two distinct activities enabled these objectives. First, a questionnaire was distributed to CEE programs across the United States, to which 33 responses were received. The results indicated that although the majority of participants believe that offering such a course will benefit students by increasing the breadth of the curriculum and by providing a holistic view of CEE, barriers such as the maximum allowable credits for graduation, the lack of motivation within a department—either because such a course did not have a champion or because the department had no plans to revise their curriculum—and a lack of expertise among faculty members inhibited inclusion of the course in curricula. Second, three case studies demonstrating successful inclusion of an introduction to infrastructure course into the CEE curriculum were evaluated. Cases were collected from Marquette University, University of Wisconsin-Platteville, and West Point CEE programs, and it was found that the key to success in including such a course is a motivated team of faculty members who are committed to educating students about different aspects of infrastructure. The results of the study can be used as a road map to help universities successfully incorporate an introduction to infrastructure course in their CEE programs

    Continued Progress: Promising Evidence on Personalized Learning

    Get PDF
    The findings are grouped into four sections. The first section on student achievement finds that there were positive effects on student mathematics and reading performance and that the lowest-performing students made substantial gains relative to their peers. The second section on implementation and the perceptions of stakeholders finds that adoption of personalized learning practices varied considerably. Personalized learning practices that are direct extensions of current practice were more common, but implementation of some of the more challenging personalized learning strategies was less common. The third section relates implementation features to outcomes and identifies three elements of personalized learning that were being implemented in tandem in the schools with the largest achievement effects. Finally, the fourth section compares teachers' and students' survey responses to a national sample and finds some differences, such as teachers' greater use of practices that support competency-based learning and greater use of technology for personalization in the schools in this study with implementation data

    Learning recursively: integrating PBL as an authentic problem experience [Plenary presentation]

    Get PDF
    [Abstract]: Problem based learning (PBL) is widely recognised as a desirable approach to education of future professionals. One strong basis for its appeal is the use of authentic problems of practice, which make the relevance of what is being learned apparent to the learners and encourage development of attitudes and skills that will be central to continuing professional growth beyond graduation. However, the change from traditional lecture-based courses to PBL presents challenges to educators and the institutions in which they work. In many respects, the implementation of PBL can be itself an experience in PBL for the educator. This presentation will address some of the challenges associated with integrating PBL in a university setting from the perspective of those who design and teach courses using PBL, which will be understood as a spectrum of practices rather than a single approach that must be replicated in every instance

    Implementing a university e‐learning strategy: levers for change within academic schools

    Get PDF
    This paper describes the implementation of an e‐learning strategy at a single higher education institution in terms of the levers used to promote effective uptake and ensure sustainable embedding. The focus of this work was at the level of the academic school using a range of change practices including the appointment of school‐based learning technologists and e‐learning champions, supporting schools to write their own strategies, a pedagogical framework of engaging with e‐learning, and curriculum development and evaluation of school‐supported projects. It is clear that the implementation of the e‐learning strategy has led to a large and increasing proportion of our students experiencing blended learning. In addition, there are initial indications that this has enhanced some learning and teaching processes. Where there has been sustainable embedding of effective e‐learning, the following levers were identified as particularly important: flexibility in practices that allow schools to contextualise their plans for change, the facilitation of communities of key staff and creating opportunities for staff to voice and challenge their beliefs about e‐learning
    • 

    corecore