12,072 research outputs found

    Inter-Joint Coordination Deficits Revealed in the Decomposition of Endpoint Jerk During Goal-Directed Arm Movement After Stroke

    Get PDF
    It is well documented that neurological deficits after stroke can disrupt motor control processes that affect the smoothness of reaching movements. The smoothness of hand trajectories during multi-joint reaching depends on shoulder and elbow joint angular velocities and their successive derivatives as well as on the instantaneous arm configuration and its rate of change. Right-handed survivors of unilateral hemiparetic stroke and neurologically-intact control participants held the handle of a two-joint robot and made horizontal planar reaching movements. We decomposed endpoint jerk into components related to shoulder and elbow joint angular velocity, acceleration, and jerk. We observed an abnormal decomposition pattern in the most severely impaired stroke survivors consistent with deficits of inter-joint coordination. We then used numerical simulations of reaching movements to test whether the specific pattern of inter-joint coordination deficits observed experimentally could be explained by either a general increase in motor noise related to weakness or by an impaired ability to compensate for multi-joint interaction torque. Simulation results suggest that observed deficits in movement smoothness after stroke more likely reflect an impaired ability to compensate for multi-joint interaction torques rather than the mere presence of elevated motor noise

    Effects of Wrist Tendon Vibration on Targeted Upper-Arm Movements in Poststroke Hemiparesis

    Get PDF
    Background. Impaired motor control of the upper extremity after stroke may be related to lost sensory, motor, and integrative functions of the brain. Artificial activation of sensory afferents might improve control of movement by adding excitatory drive to sensorimotor control structures. The authors evaluated the effect of wrist tendon vibration (TV) on paretic upper-arm stability during point-to-point planar movements. Methods. TV (70 Hz) was applied to the forearm wrist musculature of 10 hemiparetic stroke patients as they made center-out planar arm movements. End-point stability, muscle activity, and grip pressure were compared as patients stabilized at the target position for trials completed before, during, and after the application of the vibratory stimulus. Results. Prior to vibration, hand position fluctuated as participants attempted to maintain the hand at the target after movement termination. TV improved arm stability, as evidenced by decreased magnitude of hand tangential velocity at the target. Improved stability was accompanied by a decrease in muscle activity throughout the arm as well as a mean decrease in grip pressure. Conclusions. These results suggest that vibratory stimulation of the distal wrist musculature enhances stability of the proximal arm and can be studied further as a mode for improving end-point stability during reaching in hemiparetic patients

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    The Arm Motion (AMD) Detection Test

    Get PDF
    Stroke can lead to sensory deficits that impair functional control of arm movements. Here we describe a simple test of arm motion detection (AMD) that provides an objective, quantitative measure of movement perception related proprioceptive capabilities in the arm. Seven stroke survivors and thirteen neurologically intact control subjects performed the AMD test. In a series of ten trials that took less than 15 minutes to complete, participants used a two-button user interface to adjust the magnitude of hand displacements produced by a horizontal planar robot until the motions were just perceptible (i.e. on the threshold of detection). The standard deviation of movement detection threshold was plotted against the mean and a normative range was determined from the data collected with control subjects. Within this normative space, subjects with and without intact proprioception could be discriminated on a ratio scale that is meaningful for ongoing studies of degraded motor function. Thus, the AMD test provides a relatively fast, objective and quantitative measure of upper extremity proprioception of limb movement (i.e. kinesthesia)

    Parametric motion control of robotic arms: A biologically based approach using neural networks

    Get PDF
    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements

    Temporal Evolution of Both Premotor and Motor Cortical Tuning Properties Reflect Changes in Limb Biomechanics

    Get PDF
    A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery and therefore its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortices exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought

    Robotic and clinical evaluation of upper limb motor performance in patients with Friedreich's Ataxia: an observational study

    Get PDF
    Background: Friedreich’s ataxia (FRDA) is the most common hereditary autosomal recessive form of ataxia. In this disease there is early manifestation of gait ataxia, and dysmetria of the arms and legs which causes impairment in daily activities that require fine manual dexterity. To date there is no cure for this disease. Some novel therapeutic approaches are ongoing in different steps of clinical trial. Development of sensitive outcome measures is crucial to prove therapeutic effectiveness. The aim of the study was to assess the reliability and sensitivity of quantitative and objective assessment of upper limb performance computed by means of the robotic device and to evaluate the correlation with clinical and functional markers of the disease severity. Methods: Here we assess upper limb performances by means of the InMotion Arm Robot, a robot designed for clinical neurological applications, in a cohort of 14 children and young adults affected by FRDA, matched for age and gender with 18 healthy subjects. We focused on the analysis of kinematics, accuracy, smoothness, and submovements of the upper limb while reaching movements were performed. The robotic evaluation of upper limb performance consisted of planar reaching movements performed with the robotic system. The motors of the robot were turned off, so that the device worked as a measurement tool. The status of the disease was scored using the Scale for the Assessment and Rating of Ataxia (SARA). Relationships between robotic indices and a range of clinical and disease characteristics were examined. Results: All our robotic indices were significantly different between the two cohorts except for two, and were highly and reliably discriminative between healthy and subjects with FRDA. In particular, subjects with FRDA exhibited slower movements as well as loss of accuracy and smoothness, which are typical of the disease. Duration of Movement, Normalized Jerk, and Number of Submovements were the best discriminative indices, as they were directly and easily measurable and correlated with the status of the disease, as measured by SARA. Conclusions: Our results suggest that outcome measures obtained by means of robotic devices can improve the sensitivity of clinical evaluations of patients’ dexterity and can accurately and efficiently quantify changes over time in clinical trials, particularly when functional scales appear to be no longer sensitive

    Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching

    Get PDF
    We studied reach adaptation to a 30u visuomotor rotation to determine whether augmented error feedback can promote faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets surrounding a central starting point. A manipulandum tracked hand motion and projected a cursor onto a display immediately above the horizontal plane of movement. For one group, deviations from the ideal movement were amplified with a gain of 2 whereas another group experienced a gain of 3.1. The third group experienced an offset equal to the average error seen in the initial perturbations, while a fourth group served as controls. Learning in the gain 2 and offset groups was nearly twice as fast as controls. Moreover, the offset group averaged more reduction in error. Such error augmentation techniques may be useful for training novel visuomotor transformations as required of robotic teleoperators or in movement rehabilitation of the neurologically impaired

    Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces

    Get PDF
    Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity

    Submovements During Reaching Movements after Stroke

    Get PDF
    Neurological deficits after cerebrovascular accidents very frequently disrupt the kinematics of voluntary movements with the consequent impact in daily life activities. Robotic methodologies enable the quantitative characterization of specific control deficits needed to understand the basis of functional impairments and to design effective rehabilitation therapies. In a group of right handed chronic stroke survivors (SS) with right side hemiparesis, intact proprioception, and differing levels of motor impairment, we used a robotic manipulandum to study right arm function during discrete point-to-point reaching movements and reciprocal out-and-back movements to visual targets. We compared these movements with those of neurologically intact individuals (NI). We analyzed the presence of secondary submovements in the initial (i.e. outward) trajectory portion of the two tasks and found that the SS with severe impairment (F
    • …
    corecore