
N93-25964

Parametric Motion Control of Robotic Arms:

Biologically Based Approach Using Neural
Networks

A

O. Bock

Institute for Space and Terrestrial Science, and York University

G.M.T. D'Eleuterio

Institute for Aerospace Studies, University of Toronto

J. Lipitkas

Institute for Space and Terrestrial Science

and, Institute for Aerospace Studies, University of Toronto

J.J. Grodski

Defence and Civil Institute of Environmental Medicine

January 19, 1993

1 Abstract

A neural network based system is presented

which is able to generate point-to-point move-

ments of robotic manipulators. The foun-

dation of this approach is the use of proto-

typical control torque signals which are de-

fined by a set of parameters. The parameter

set is used for scaling and shaping of these

prototypical torque signals to effect a de-

sired outcome of the system. This approach

is based on neurophysiological findings that

the central nervous system stores general-

ized cognitive representations of movements

called synergies, schemas, or motor programs.

It has been proposed that these motor pro-

grams may be stored as torque-time functions

in central pattern generators which can be

scaled with appropriate time and magnitude

parameters. The central pattern generators

use these parameters to generate stereotypi-

cal torque-time profiles, which are then sent

to the joint actuators. Hence, only a small

number of parameters need to be determined

for each point-to-point movement instead of

the entire torque-time trajectory. This same

principle is implemented for controlling the

joint torques of robotic manipulators where

a neural network is used to identify the rela-

tionship between the task requirements and

the torque parameters. Movements are spec-

ified by the initial robot position in joint co-
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ordinates and the desired final end-effector

position in Cartesian coordinates. This in-

formation is provided to the neural nelwork

which calculates six torque parameter._ [or

a two-link system. The prototypical torque

profiles (one per joint) are then scaled by

those parameters. After appropriate training

of the network, our parametric control design

allowed the reproduction of a trained set of

movements with relatively high accuracy, and

the production of previously untrained move-

ments with comparable accuracy. We con-

clude that our approach was successful in dis-

criminating between trained movements and

in generalizing to untrained movements.

2 Introduction

An important problem in space robotics is

point-to-point control of the robotic arm

end-effector in an unstructured environment.

Many attempts have been made to solve this

problem: the usual methods are tedious and

computationally intensive to solve in real-

time, even with the most advanced compu-

tational methods ( [4], [11], [la]). This paper

introduces a different strategy based on mo-

tor control principles used by humans.

In many studies on human movements,

consistent and stereotypical hand and joint

trajectories have been observed across move-

ment speeds, extents, directions, and exter-

nal loads. Such findings support the no-

t.ion that movements are controlled by pro-

totypical motor programs which are stored in

the central nervous system and scaled to fit

the requirements of each particular movement

task before playback [1], [2], [5], [7], [12],

[15], [16]. In particular, it has been proposed

that these motor programs may be stored as

muscle force-time functions and that (lifter-

ent movements along the same path, but with

varying speed or paylod, can be executed by

playing back those functions with appropriate

time and magnitude scaling. Therefore, the

human motor system repla_ces the explicit cal-

culation of the entire muscle-force profile by

the calculation of just a few scaling parame-

ters which are used to control central pattern

generators (CPG) where the motor programs
are stored.

A problem emerging from the motor pro-

gram concept is that, since an infinite number

of possible movements exist, the nervous sys-

tem must have some way to calculate or to

look up an infinite number of possible scal-

ing parameters. Recently, engineering solu-

tions for similar problems have been intro-

duced in the form of artificial neural networks

(ANN's [14]). Essentially, an ANN consists of

processing elements, interconnection topolo-

gies, and a learning algorithm governing the

modification Of connection strengths depend-

ing on mapping performance. Generally, an

ANN allows the mapping of input values into

output values based on previously established

mapping rules. These rules are determined

via a repetitive trial-and-error learning pro-

cedure rather than by explicit calculations.

An important characteristic of ANN's is that

once a correct mapping has been learned for a

number of input values, the network can gen-

eralize and provide correct output values even

for untrained input values. Thus the above

problem of representing an infinite number of

parameters can be overcome by using neural

networks to find suitable solutions.

To summarize, control by motor programs

appears to be potentially useful for manipula-

tor control because the controller would only

have to calculate a limited number of scal-

ing parameters before movement onset rather

than calculating the entire joint torque-time
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profiles in real-time. This resultsin a robotic
manipulator control system that can be re-
ferred to asa Parametric Control System, and

is presented here as a means of controlling

the joint torques of a two degree-of-freedom

planar robotic manipulator. Furthermore,

this approach is used in conjunction with a
neural network which identifies the relation-

ship between the task requirements and the

torque parameters. Therefore, the approach

presented here combines the motor program

concept with neural networks to determine

the joint torque-time functions necessary to

drive a robotic manipulator end-effector from

an initial to a desired final configuration.

3 Control Strategy

The control problem is to move a two-link

planar robotic arm, as shown in Figure 1,

from an initial position to a desired final posi-

tion within the workspace shown. The robot

manipulator control system, which was used,

is designed to utilize the benefits of the motor

program concept, and is illustrated in Fig-

ure 2. The adaptive controller is an ANN,

trained to map inputs xd, O, into outputs

p. The parameters p are applied to a func-

tion generator which generates a prototypical
time-function. This time-function is scaled

by p to yield the force-time functions Td(t),

one per joint, to be applied by the plant. In

the work reported here, the plant is the Ra-

dius robotic manipulator at the University of

Toronto Institute for Aerospace Studies [3].

This manipulator is a two degree-of-freedom

planar manipulator with rigid links, where

the links are supported by airjets in the hor-

izontal plane. The airjets allow the Radius

robotic manipulator to move in the horizontal

plane without friction. The two joint actua-
tors are harmonic-drive servomotors with the

joint position 0_ being measured by precision

potentiometers.

The ANN was implemented using the

structure shown in Figure 3. Each neuron is

a logistic unit having a working range of - 1.0

to + 1.0 with all of the neurons being fully

forward-connected. Inputs to the ANN struc-

ture are xd, the two Cartesian coordinates of

the desired final gripper position, and 0a, the

actual initial angles of both joints, with 0a

and xd being sampled once before a move-

ment.

The input signals Xd and 0_ pass through

a layer of 127 coarse-coding neurons [6] (each

neuron being tuned to a range of input val-

ues with overlapping ranges for neighboring

neurons), then through two hidden layers of

20 units per layer (the first layer containing

20 neurons and the second layer containing

20 neurons) and finally through a layer of six

output neurons. The output signals provided

by the last lay('r represent the values of the

six parameters p which were previously de-

scribed. Three of these parameters are used

for each joint, p, to Pa for the shoulder joint

and p4 to p6 for the elbow joint.

The parameters p serve as inputs to

the Function Generator (Figure 2), which

in turn provides two output signals Td(t),

one for each joint, which are applied to the

plant. Both output signals are triggered syn-

chronously when p changes after a new Xd has

been entered, and each output signal consists

of two successive sinusoidal half-waves hav-

ing an overall duration of 4 sec. Figure 4

illustrates that Pl and P4 represent the per-

centage of movement time taken by the first

lobe of the two torque profiles, one for each

joint, and p2, p3, ps, and P6 represent the max-

imum torque amplitudes for each lobe of the

two torque profiles.
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The function of tile ANN is, essentially,
to map four discrete input signals Xd, 0 a for

the two joints into six discrete output signals

Pl,P2, and Pa (the torque parameters for the

shoulder joint) and p4, ps, and p6 (the torque

parameters for the elbow joint). Only a single

mapping action per movement is needed. The

modifiable ANN weights are adjusted in order

to achieve satisfactory mapping by a modi-

fied version of Direct Inverse Modeling [8], a

known training procedure.

In this modified Direct Inverse Model-

ing training procedure, the initial Radius

joint positions 0_ are first noted and an op-

erator then moves the gripper into a se-

lected final position x8 along an approxi-

mately straight path with an approximately

bell-shaped, single-peaked velocity profile of

4 second duration. The joint trajectories O(t)

during that movement are recorded on a disk

and subsequently transformed into predicted

joint torque profiles Tp(t) using I?,dius's In-

verse Dynamics equations. Next, predicted

joint torque profiles Tp(t) are approximated

by two sinusoidal half-waves of variable rel-

ative duration and amplitude and the corre-

sponding parameters p are noted. Then, Ra-

dius having been reset to O,,p is provided as

inputs to the function generator which sup-

plies outputs Td(t) to the actuators in order

to drive Radius to a final position noted as xd.

Since the parameterization is only an approx-

imation, Td(t) and Tp(t)will be somewhat dif-

ferent and xd will be somewhat different from

X s •

The noted values of Xd, O_ and p character-

ize one movement of a training set. The above

steps are repeated for 225 different move-

ments of various amplitudes and directions

within the workspace shown in Figure 1 to

yield a set of 225 training movements char-

acterized by their respective values of xd, O_

and p.

Training of the ANN commences by ini-

tializing the modifiable weights with random

values. Th('n Xd and 0_ of the training set

are used as the ANN inputs and the corre-

sponding outputs p are recorded. The differ-

eJtce between p as calculated by the ANN and

the corresponding p as noted for the train-

ing set is the ANN performance error and

is used for incremental weight changes ac-

cording to the backpropagation rule. ANN

performance is considered satisfactory when

the output values pl to P6, which are applied

to the function generator, result in a grip-

per movement to the desired final position xe

such that xa _ x_.

4 Results

An illustrative representation of network per-

formance is given by Figure 5, where the fi-

nal position error of the end-effector is plot-

ted. The errors are coded as lines from the

actual final position to the desired final po-

sition. Performance before training is shown

in Figure 5A, and after training (10,000 itera-

tions) in Figure 5B. As can be seen, the errors

between the desired and actual final end el-

lector positions are greatly reduced. In fact,

the average error drops from 0.75 m before

training, to 0.03 m after training: in compar-

ison, the robotic arm is 2.12 m long. There-

fore, the error after learning was almost an

order of magnitude smaller than the inter-

target distances which ranged from 0.1 m to

0.85 m. Thus, the system was able to dis-

criminate between targets. Figure 5C shows

the final posi_ ion errors of the trained neural-

network controller using a set of movements

that were not previously trained. As can be

seen, the average final position error of 0.07
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m was slightly higher than the trained data
set, but wasagain less than the shortest in-
tertarget distance. Therefore,generalization
within the workspacewassuccessful.

5 Conclusions

We have described a solution to the control

of point-to-point movements of a two joint

planar robotic arm. This parametric control

concept is qualitatively different from tradi-

tional approaches described earlier. Instead

of explicitly calculating the torques for the

entire trajectory, the new concept specifies

only a limited numb0r of characteristic pa-

rameters. In addition, the control system

presented in this paper provides the follow-

ing advantages over most other known types

of systems:

.

*

.

.

No explicit knowledge of the manipula-

tor's dynamics is required.

The nonlinear (ANN) stage is not in a

control loop which will avoid any prob-

lems due to computational delays of

the type generally caused by nonlinear

stages.

The ANN can be easily retrained for

different robotic manipulators and/or

changing robot dynamics.

The design of a controller for a multi-

link robotic manipulator with n > 2 is

not qualitatively different than that de-

scribed in this paper since the nonlin-

ear stage is designed by trial-and-error

rather that by an analytical solution.

control should be particularly useful for real-

time robot control in unstructured environ-

ments since only a limited number of vari-

ables need to be updated, therefore placing

less of a computational burden on the con-

troller. Moreover, our control concept may

be improved to achieve a more accurate ter-

minal approach to the targets by the addi-

tion of sensory feedback, as found in humans.

Also, this concept could be easily expanded

to allow for velocity control by direct scaling

of the torque profiles, and better control of

movement paths could be achieved by adding

more parameters (pl).
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Figure i: Two-link planar manipulator and workspace (LI and L2 are the link lengths of the first

and second links, where LI = L2 = 1.06 m).
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Figure 2: Block diagram of the control system utilized, where solid lines represent time varying

actions and hatched lines represent a single mapping actions per movement (Xd and .\r are the

desired and actual end-effector positions, 0_ the initial robot configuration in joint coordinates,

P[s are the torque scaling parameters, T1(t) and T_(t) are the joint torque-time profiles for the

shoulder and elbow joints, and Ta(t) represents the input torques to the plant).
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Figure 3: Artificial neural network architecture used in the simulations reported here (n = 127).

All neurons are fully forward- connected to the neurons in the layers in front.

Torque (Nm)

Pl' I)4
13me (sec)

Figure 4: Torque parameterization scheme employed. Where pl, and p4 are the time of switching
from the first lobe to the second lobe for torque profiles 7'1 and T2 respectively, p2 and ps are

the amplitudes of the first lobe, and p3 and p6 are the amplitudes of the second lobe for torque

profiles 7'1 and T2.
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Figure 5: Graphical illustration of the final position errors from the actual to the desired final

end-effector positions (A - final position errors before training, B - final position errors after

training, for same workspace as A, C - final position errors for an untrained data set, for same

workspace as A also).
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