11,332 research outputs found

    Accounting for material scatter in sheet metal forming simulations

    Get PDF
    Robust design of forming processes is gaining attention throughout the industry. To analyze the robustness of a sheet metal forming process using Finite Element (FE) simulations, an accurate input in terms of parameter variation is required. This paper presents a pragmatic, accurate and economic approach for measuring and modeling one of the main inputs, i.e. material properties and its associated scattering. For the purpose of this research, samples of 41 coils of a forming steel DX54D+Z (EN 10327:2004) from multiple batches have been collected. Fully determining the stochastic material behavior to the required accuracy for precise modeling in FE simulations would involve performing many mechanical experiments. Instead, the present work combines mechanical testing and texture analysis to limit the required effort. Moreover, use is made of the correlations between the material parameters to efficiently model the material property scatter for use in the numerical robustness analysis. The proposed approach is validated by the forming of a series of cup products using the collected material. The observed experimental scatter can be reproduced efficiently using FE simulations, demonstrating the potential of the modeling approach and robustness analysis in general

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    Cortical Synchronization and Perceptual Framing

    Full text link
    How does the brain group together different parts of an object into a coherent visual object representation? Different parts of an object may be processed by the brain at different rates and may thus become desynchronized. Perceptual framing is a process that resynchronizes cortical activities corresponding to the same retinal object. A neural network model is presented that is able to rapidly resynchronize clesynchronized neural activities. The model provides a link between perceptual and brain data. Model properties quantitatively simulate perceptual framing data, including psychophysical data about temporal order judgments and the reduction of threshold contrast as a function of stimulus length. Such a model has earlier been used to explain data about illusory contour formation, texture segregation, shape-from-shading, 3-D vision, and cortical receptive fields. The model hereby shows how many data may be understood as manifestations of a cortical grouping process that can rapidly resynchronize image parts which belong together in visual object representations. The model exhibits better synchronization in the presence of noise than without noise, a type of stochastic resonance, and synchronizes robustly when cells that represent different stimulus orientations compete. These properties arise when fast long-range cooperation and slow short-range competition interact via nonlinear feedback interactions with cells that obey shunting equations.Office of Naval Research (N00014-92-J-1309, N00014-95-I-0409, N00014-95-I-0657, N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0334, F49620-92-J-0225)

    Texture Mixer: A Network for Controllable Synthesis and Interpolation of Texture

    Full text link
    This paper addresses the problem of interpolating visual textures. We formulate this problem by requiring (1) by-example controllability and (2) realistic and smooth interpolation among an arbitrary number of texture samples. To solve it we propose a neural network trained simultaneously on a reconstruction task and a generation task, which can project texture examples onto a latent space where they can be linearly interpolated and projected back onto the image domain, thus ensuring both intuitive control and realistic results. We show our method outperforms a number of baselines according to a comprehensive suite of metrics as well as a user study. We further show several applications based on our technique, which include texture brush, texture dissolve, and animal hybridization.Comment: Accepted to CVPR'1

    Generalized enthalpy model of a high pressure shift freezing process

    Get PDF
    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition the significant heat transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature
    corecore