172,524 research outputs found

    Multidimensional Gravity on the Principal Bundles

    Get PDF
    The multidimensional gravity on the total space of principal bundle is considered. In this theory the gauge fields arise as nondiagonal components of multidimensional metric. The spherically symmetric and cosmology solutions for gravity on SU(2) principal bundle are obtained. The static spherically symmetric solution is wormhole-like solution located between two null surfaces, in contrast to 4D Einstein-Yang-Mills theory where corresponding solution (black hole) located outside of event horizon. Cosmology solution (at least locally) has the bouncing off effect for spatial dimensions. In spirit of Einstein these solutions are vacuum solutions without matter.Comment: REVTEX, 13pages, 2 EPS figure

    Ideal magnetohydrodynamic equilibria with helical symmetry and incompressible flows

    Full text link
    A recent study on axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows [H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas {\bf 5}, 2378 (1998)] is extended to the generic case of helically symmetric equilibria with incompressible flows. It is shown that the equilibrium states of the system under consideration are governed by an elliptic partial differential equation for the helical magnetic flux function ψ\psi containing five surface quantities along with a relation for the pressure. The above mentioned equation can be transformed to one possessing differential part identical in form to the corresponding static equilibrium equation, which is amenable to several classes of analytic solutions. In particular, equilibria with electric fields perpendicular to the magnetic surfaces and non-constant-Mach-number flows are constructed. Unlike the case in axisymmetric equilibria with isothermal magnetic surfaces, helically symmetric T=T(ψ)T=T(\psi) equilibria are over-determined, i.e., in this case the equilibrium equations reduce to a set of eight ordinary differential equations with seven surface quantities. In addition, it is proved the non-existence of incompressible helically symmetric equilibria with (a) purely helical flows (b) non-parallel flows with isothermal magnetic surfaces and the magnetic field modulus being a surface quantity (omnigenous equilibria).Comment: Latex file, 13 pages, accepted in J. Plasma Phy

    Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold

    Get PDF
    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can lead to the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis

    Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition in binary polymer blends

    Full text link
    Within self-consistent field theory we study the phase behaviour of a symmetric binary AB polymer blend confined into a thin film. The film surfaces interact with the monomers via short range potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to the interface localisation/delocalisation transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exhibits two critical points which correspond to the prewetting critical points of the semi-infinite system. The crossover between these qualitatively different limiting behaviours occurs gradually, however, the critical temperature and the critical composition exhibit a non-monotonic dependence on the surface field.Comment: to appear in Europhys.Let
    corecore