50 research outputs found

    Field-portable pixel super-resolution colour microscope.

    Get PDF
    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings

    Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy.

    Get PDF
    Lensfree in-line holographic microscopy offers sub-micron resolution over a large field-of-view (e.g., ~24 mm2) with a cost-effective and compact design suitable for field use. However, it is limited to relatively low-density samples. To mitigate this limitation, we demonstrate an on-chip imaging approach based on pixel super-resolution and phase recovery, which iterates among multiple lensfree intensity measurements, each having a slightly different sample-to-sensor distance. By digitally aligning and registering these lensfree intensity measurements, phase and amplitude images of dense and connected specimens can be iteratively reconstructed over a large field-of-view of ~24 mm2 without the use of any spatial masks. We demonstrate the success of this multi-height in-line holographic approach by imaging dense Papanicolaou smears (i.e., Pap smears) and blood samples

    High-throughput screening of encapsulated islets using wide-field lens-free on-chip imaging

    Full text link
    Islet microencapsulation is a promising solution to diabetes treatment, but its quality control based on manual microscopic inspection is extremely low-throughput, highly variable and laborious. This study presents a high-throughput islet-encapsulation quality screening system based on lens-free on-chip imaging with a wide field-of-view of 18.15 cm^2, which is more than 100 times larger than that of a lens-based optical microscope, enabling it to image and analyze ~8,000 microcapsules in a single frame. Custom-written image reconstruction and processing software provides the user with clinically important information, such as microcapsule count, size, intactness, and information on whether each capsule contains an islet. This high-throughput and cost-effective platform can be useful for researchers to develop better encapsulation protocols as well as perform quality control prior to transplantation

    Nonmechanical parfocal and autofocus features based on wave propagation distribution in lensfree holographic microscopy

    Get PDF
    Performing long-term cell observations is a non-trivial task for conventional optical microscopy, since it is usually not compatible with environments of an incubator and its temperature and humidity requirements. Lensless holographic microscopy, being entirely based on semiconductor chips without lenses and without any moving parts, has proven to be a very interesting alternative to conventional microscopy. Here, we report on the integration of a computational parfocal feature, which operates based on wave propagation distribution analysis, to perform a fast autofocusing process. This unique non-mechanical focusing approach was implemented to keep the imaged object staying in-focus during continuous long-term and real-time recordings. A light-emitting diode (LED) combined with pinhole setup was used to realize a point light source, leading to a resolution down to 2.76 μm. Our approach delivers not only in-focus sharp images of dynamic cells, but also three-dimensional (3D) information on their (x, y, z)-positions. System reliability tests were conducted inside a sealed incubator to monitor cultures of three different biological living cells (i.e., MIN6, neuroblastoma (SH-SY5Y), and Prorocentrum minimum). Altogether, this autofocusing framework enables new opportunities for highly integrated microscopic imaging and dynamic tracking of moving objects in harsh environments with large sample areas

    Color Capable Sub-Pixel Resolving Optofluidic Microscope and Its Application to Blood Cell Imaging for Malaria Diagnosis

    Get PDF
    Miniaturization of imaging systems can significantly benefit clinical diagnosis in challenging environments, where access to physicians and good equipment can be limited. Sub-pixel resolving optofluidic microscope (SROFM) offers high-resolution imaging in the form of an on-chip device, with the combination of microfluidics and inexpensive CMOS image sensors. In this work, we report on the implementation of color SROFM prototypes with a demonstrated optical resolution of 0.66 µm at their highest acuity. We applied the prototypes to perform color imaging of red blood cells (RBCs) infected with Plasmodium falciparum, a particularly harmful type of malaria parasites and one of the major causes of death in the developing world

    Compact, lensless digital holographic microscope for remote microbiology

    Get PDF
    In situ investigation of microbial life in extreme environments can be carried out with microscopes capable of imaging 3-dimensional volumes and tracking particle motion. Here we present a lensless digital holographic microscope approach that provides roughly 1.5 micron resolution in a compact, robust package suitable for remote deployment. High resolution is achieved by generating high numerical-aperture input beams with radial gradient-index rod lenses. The ability to detect and track prokaryotes was explored using bacterial strains of two different sizes. In the larger strain, a variety of motions were seen, while the smaller strain was used to demonstrate a detection capability down to micron scales
    corecore