26 research outputs found

    Towards an understanding of the consequences of technology-driven decision support for maritime navigation

    Get PDF
    The maritime industry is undergoing a transformation driven by digitalization and connectivity. There is speculation that in the next two decades the maritime industry will witness changes far exceeding those experienced over the past 100 years. While change is inevitable in the maritime domain, technological developments do not guarantee navigational safety, efficiency, or improved seaway traffic management. The International Maritime Organization (IMO) has adopted the Maritime Autonomous Surface Ships (MASS) concept to define autonomy on a scale from Degrees 1 through 4.\ua0 Investigations into the impact of MASS on various aspects of the maritime sociotechnical system is currently ongoing by academic and industry stakeholders. However, the early adoption of MASS (Degree 1), which is classified as a crewed ship with decision support, remains largely unexplored. Decision support systems are intended to support operator decision-making and improve operator performance. In practice they can cause unintended changes throughout other elements of the maritime sociotechnical system. In the maritime industry, the human is seldom put first in technology design which paradoxically introduces human-automation challenges related to technology acceptance, use, trust, reliance, and risk. The co-existence of humans and automation, as it pertains to navigation and navigational assistance, is explored throughout this thesis. The aims of this thesis are (1) to understand how decision support will impact navigation and navigational assistance from the operator’s perspective and (2) to explore a framework to help reduce the gaps between the design and use of decision support technologies. This thesis advocates for a human-centric approach to automation design and development while exploring the broader impacts upon the maritime sociotechnical system. This work considers three different projects and four individual data collection efforts during 2017-2022. This research took place in Gothenburg, Sweden, and Warsash, UK and includes data from 65 Bridge Officers (navigators) and 16 Vessel Traffic Service (VTS) operators. Two testbeds were used to conduct the research in several full mission bridge simulators, and a virtual reality environment. A mixed methods approach, with a heavier focus on qualitative data, was adopted to understand the research problem. Methodological tools included literature reviews, observations, questionnaires, ship maneuvering data, collective interviews, think-aloud protocol, and consultation with subject matter experts. The data analysis included thematic analysis, subject matter expert consultation, and descriptive statistics.\ua0The results show that operators perceive that decision support will impact their work, but not necessarily as expected. The operators’ positive and negative perceptions are discussed within the frameworks of human-automation interaction, decision-making, and systems thinking. The results point towards gaps in work as it is intended to be done and work as it is done in the user’s context. A user-driven design framework is proposed which allows for a systematic, flexible, and iterative design process capable of testing new technologies while involving all stakeholders. These results have led to the identification of several research gaps in relation to the overall preparedness of the shipping industry to manage the evolution toward smarter ships. This thesis will discuss these findings and advocate for human-centered automation within the quickly evolving maritime industry

    Sensor Networks and Their Applications: Investigating the Role of Sensor Web Enablement

    Get PDF
    The Engineering Doctorate (EngD) was conducted in conjunction with BT Research on state-of-the-art Wireless Sensor Network (WSN) projects. The first area of work is a literature review of WSN project applications, some of which the author worked on as a BT Researcher based at the world renowned Adastral Park Research Labs in Suffolk (2004-09). WSN applications are examined within the context of Machine-to-Machine (M2M); Information Networking (IN); Internet/Web of Things (IoT/WoT); smart home and smart devices; BT’s 21st Century Network (21CN); Cloud Computing; and future trends. In addition, this thesis provides an insight into the capabilities of similar external WSN project applications. Under BT’s Sensor Virtualization project, the second area of work focuses on building a Generic Architecture for WSNs with reusable infrastructure and ‘infostructure’ by identifying and trialling suitable components, in order to realise actual business benefits for BT. The third area of work focuses on the Open Geospatial Consortium (OGC) standards and their Sensor Web Enablement (SWE) initiative. The SWE framework was investigated to ascertain its potential as a component of the Generic Architecture. BT’s SAPHE project served as a use case. BT Research’s experiences of taking this traditional (vertical) stove-piped application and creating SWE compliant services are described. The author’s findings were originally presented in a series of publications and have been incorporated into this thesis along with supplementary WSN material from BT Research projects. SWE 2.0 specifications are outlined to highlight key improvements, since work began at BT with SWE 1.0. The fourth area of work focuses on Complex Event Processing (CEP) which was evaluated to ascertain its potential for aggregating and correlating the shared project sensor data (‘infostructure’) harvested and for enabling data fusion for WSNs in diverse domains. Finally, the conclusions and suggestions for further work are provided

    Efficient Range-Free Monte-Carlo-Localization for Mobile Wireless Sensor Networks

    Get PDF
    Das Hauptproblem von Lokalisierungsalgorithmen für WSNs basierend auf Ankerknoten ist die Abhängigkeit von diesen. Mobilität im Netzwerk kann zu Topologien führen, in denen einzelne Knoten oder ganze Teile des Netzwerks temporär von allen Ankerknoten isoliert werden. In diesen Fällen ist keine weitere Lokalisierung möglich. Dies wirkt sich primär auf den Lokalisierungsfehler aus, der in diesen Fällen stark ansteigt. Des weiteren haben Betreiber von Sensornetzwerken Interesse daran, die Anzahl der kosten- und wartungsintensiveren Ankerknoten auf ein Minimum zu reduzieren. Dies verstärkt zusätzlich das Problem von nicht verfügbaren Ankerknoten während des Netzwerkbetriebs. In dieser Arbeit werden zunächst die Vor- und Nachteile der beiden großen Hauptkategorien von Lokalisierungsalgorithmen (range-based und range-free Verfahren) diskutiert und eine Studie eines oft für range-based Lokalisierung genutzten Distanzbestimmungsverfahren mit Hilfe des RSSI vorgestellt. Danach werden zwei neue Varianten für ein bekanntes range-free Lokalisierungsverfahren mit Namen MCL eingeführt. Beide haben zum Ziel das Problem der temporär nicht verfügbaren Ankerknoten zu lösen, bedienen sich dabei aber unterschiedlicher Mittel. SA-MCL nutzt ein dead reckoning Verfahren, um die Positionsschätzung vom letzten bekannten Standort weiter zu führen. Dies geschieht mit Hilfe von zusätzlichen Sensorinformationen, die von einem elektronischen Kompass und einem Beschleunigungsmesser zur Verfügung gestellt werden. PO-MCL hingegen nutzt das Mobilitätsverhalten von einigen Anwendungen in Sensornetzwerken aus, bei denen sich alle Knoten primär auf einer festen Anzahl von Pfaden bewegen, um den Lokalisierungsprozess zu verbessern. Beide Methoden werden durch detaillierte Netzwerksimulationen evaluiert. Im Fall von SA-MCL wird außerdem eine Implementierung auf echter Hardware vorgestellt und eine Feldstudie in einem mobilen Sensornetzwerk durchgeführt. Aus den Ergebnissen ist zu sehen, dass der Lokalisierungsfehler in Situationen mit niedriger Ankerknotendichte im Fall von SA-MCL um bis zu 60% reduziert werden kann, beziehungsweise um bis zu 50% im Fall von PO-MCL.

    Cooperative speed assistance : interaction and persuasion design

    Get PDF

    Maritime Transport ‘14

    Get PDF

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore