8 research outputs found

    Few Shot Network Compression via Cross Distillation

    Full text link
    Model compression has been widely adopted to obtain light-weighted deep neural networks. Most prevalent methods, however, require fine-tuning with sufficient training data to ensure accuracy, which could be challenged by privacy and security issues. As a compromise between privacy and performance, in this paper we investigate few shot network compression: given few samples per class, how can we effectively compress the network with negligible performance drop? The core challenge of few shot network compression lies in high estimation errors from the original network during inference, since the compressed network can easily over-fits on the few training instances. The estimation errors could propagate and accumulate layer-wisely and finally deteriorate the network output. To address the problem, we propose cross distillation, a novel layer-wise knowledge distillation approach. By interweaving hidden layers of teacher and student network, layer-wisely accumulated estimation errors can be effectively reduced.The proposed method offers a general framework compatible with prevalent network compression techniques such as pruning. Extensive experiments on benchmark datasets demonstrate that cross distillation can significantly improve the student network's accuracy when only a few training instances are available.Comment: AAAI 202

    Dual Discriminator Adversarial Distillation for Data-free Model Compression

    Full text link
    Knowledge distillation has been widely used to produce portable and efficient neural networks which can be well applied on edge devices for computer vision tasks. However, almost all top-performing knowledge distillation methods need to access the original training data, which usually has a huge size and is often unavailable. To tackle this problem, we propose a novel data-free approach in this paper, named Dual Discriminator Adversarial Distillation (DDAD) to distill a neural network without any training data or meta-data. To be specific, we use a generator to create samples through dual discriminator adversarial distillation, which mimics the original training data. The generator not only uses the pre-trained teacher's intrinsic statistics in existing batch normalization layers but also obtains the maximum discrepancy from the student model. Then the generated samples are used to train the compact student network under the supervision of the teacher. The proposed method obtains an efficient student network which closely approximates its teacher network, despite using no original training data. Extensive experiments are conducted to to demonstrate the effectiveness of the proposed approach on CIFAR-10, CIFAR-100 and Caltech101 datasets for classification tasks. Moreover, we extend our method to semantic segmentation tasks on several public datasets such as CamVid and NYUv2. All experiments show that our method outperforms all baselines for data-free knowledge distillation

    Multi-teacher knowledge distillation as an effective method for compressing ensembles of neural networks

    Full text link
    Deep learning has contributed greatly to many successes in artificial intelligence in recent years. Today, it is possible to train models that have thousands of layers and hundreds of billions of parameters. Large-scale deep models have achieved great success, but the enormous computational complexity and gigantic storage requirements make it extremely difficult to implement them in real-time applications. On the other hand, the size of the dataset is still a real problem in many domains. Data are often missing, too expensive, or impossible to obtain for other reasons. Ensemble learning is partially a solution to the problem of small datasets and overfitting. However, ensemble learning in its basic version is associated with a linear increase in computational complexity. We analyzed the impact of the ensemble decision-fusion mechanism and checked various methods of sharing the decisions including voting algorithms. We used the modified knowledge distillation framework as a decision-fusion mechanism which allows in addition compressing of the entire ensemble model into a weight space of a single model. We showed that knowledge distillation can aggregate knowledge from multiple teachers in only one student model and, with the same computational complexity, obtain a better-performing model compared to a model trained in the standard manner. We have developed our own method for mimicking the responses of all teachers at the same time, simultaneously. We tested these solutions on several benchmark datasets. In the end, we presented a wide application use of the efficient multi-teacher knowledge distillation framework. In the first example, we used knowledge distillation to develop models that could automate corrosion detection on aircraft fuselage. The second example describes detection of smoke on observation cameras in order to counteract wildfires in forests.Comment: Doctoral dissertation in the field of computer science, machine learning. Application of knowledge distillation as aggregation of ensemble models. Along with several uses. 140 pages, 67 figures, 13 table

    Few Shot Network Compression via Cross Distillation

    No full text
    corecore