21 research outputs found

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Interference management in femtocell communication system

    Get PDF
    [no abstract

    INTERFERENCE MITIGATION PADA JARINGAN FEMTOCELL DENGAN PENYESUAIAN DAYA DAN BANDWIDTH MELALUI SKEMA SELF-CONFIGURATION

    Get PDF
    Seiring berkembangnya teknologi, komunikasi jarak jauh bukan lagi suatu hal yang eksklusif, kebutuhan akan komunikasi semakin tinggi, termasuk untuk di area indoor building. Permasalahan cukup besar yang dialami saat ini adalah sinyal dari BTS menurun drastis karena terhalang dinding dan beton, sehingga diperlukan adanya femtocell untuk menjaga kualitas sinyal. Salah satu permasalahan yang ditemui dalam penggunaan femtocell itu sendiri adalah munculnya interferensi yang dialami oleh pengguna yang berada pada jangkauan langsung BTS macro, yang dikenal dengan interferensi cross-tier. Permasalahan berikutnya yang muncul dari interferensi tersebut adalah tidak meratanya throughput yang diterima oleh pengguna femtocell. Salah satu skema untuk memaksimalkan kembali kualitas sinyal yang diterima oleh pengguna indoor building atas permasalahan interferensi jenis tersebut adalah dengan skema self-configuration. Siterapkannya sistem reward dan penalty pada skema tersebut, throughput yang didapatkan oleh setiap pengguna akan terus dipantau, sehingga pada akhirnya mendapat throughput diatas nilai yang diinginkan dengan tidak terlalu berlebih. Hasil yang didapatkan pada Tugas Akhir ini, skema self-configuration berhasil menaikkan throughput pengguna yang diobservasi pada saat dibawah nilai yang diinginkan, dan menurunkan throughput yang terlalu berlebih pada seluruh skenario bandwidth yang diujikan. Skema self-configuration dengan bandwidth 10MHz menjadi yang paling efektif jika dibandingkan dengan penggunaan dua bandwidth lainnya, dengan hasil saat throughput awal kurang dari 2Mbps, throughput meningkat 6.364 kali. Sedangkan ketika throughput awal lebih dari 2Mbps+Uf, throughput diturunkan 1.136 kali

    Interference Mitigation through Successive Cancellation in Heterogeneous Networks

    Get PDF

    5G uplink interference simulations, analysis and solutions: The case of pico cells dense deployment

    Get PDF
    The launch of the new mobile network technology has paved the way for advanced and more productive industrial applications based on high-speed and low latency services offered by 5G. One of the key success points of the 5G network is the available diversity of cell deployment modes and the flexibility in radio resources allocation based on userโ€™s needs. The concept of Pico cells will become the future of 5G as they increase the capacity and improve the network coverage at a low deployment cost. In addition, the short-range wireless transmission of this type of cells uses little energy and will allow dense applications for the internet of things. In this contribution, we present the advantages of using Pico cells and the characteristics of this type of cells in 5G networks. Then, we will do a simulation study of the interferences impact in uplink transmission in the case of PICO cells densified deployment. Finally, we will propose a solution for interference avoidance between pico cells that also allows flexible management of bands allocated to the users in uplink according to userโ€™s density and bandwidth demand

    ํŽจํ† ์…€ ๋„คํŠธ์›Œํฌ์—์„œ ์ž์› ๊ด€๋ฆฌ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 8. ์ „ํ™”์ˆ™.๋ชจ๋ฐ”์ผ ํŠธ๋ž˜ํ”ฝ ์ˆ˜์š”๊ฐ€ ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์‹ค๋‚ด ์‚ฌ์šฉ์ž๋“ค์—๊ฒŒ ๋‚ฎ์€ ๋น„์šฉ์œผ๋กœ ๊ณ ํ’ˆ์งˆ์˜ ๋ฐ์ดํ„ฐ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ํŽจํ† ์…€์ด ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํŽจํ† ์…€์ด ๊ธฐ์กด์˜ ๋งคํฌ๋กœ์…€ ์œ„์— ๊ตฌ์ถ•๋œ two-tier ํŽจํ† ์…€ ๋„คํŠธ์›Œํฌ์—์„œ ์ฃผํŒŒ์ˆ˜ ํšจ์œจ๊ณผ ์—๋„ˆ์ง€ ํšจ์œจ ํ–ฅ์ƒ์„ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ €, ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํŽจํ† ์…€๋“ค๊ณผ ์ค‘์ฒฉ ๋งคํฌ๋กœ์…€ ์‚ฌ์ด์˜ ํ•˜ํ–ฅ ๋งํฌ ๋ฌด์„  ์ž์› ๋ถ„ํ• (radio resource partitioning) ๊ธฐ๋ฒ•์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฌด์„  ์ž์› ๋ถ„ํ•  ๊ธฐ๋ฒ•์—์„œ๋Š” ๋ชจ๋ฐ”์ผ ๋ฐ์ดํ„ฐ ํญ์ฆ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๋˜ ๋‹ค๋ฅธ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์ธ ๋ถ„ํ•  ์ฃผํŒŒ์ˆ˜ ์žฌ์‚ฌ์šฉ(fractional frequency reuse, FFR) ๊ธฐ์ˆ ์ด ์ ์šฉ๋œ ๋งคํฌ๋กœ์…€ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ณ ๋ คํ•˜์˜€๋‹ค. FFR ๊ตฌ์กฐ์—์„œ ๋งคํฌ๋กœ์…€์˜ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์€ ๋‹ค์ˆ˜์˜ ์ฃผํŒŒ์ˆ˜ ๋ถ„ํ• ๋“ค(frequency partitions, FPs)๋กœ ๋‚˜๋ˆ„์–ด์ง€๊ณ , FP๋งˆ๋‹ค ๋‹ค๋ฅธ ์ „์†ก ์ „๋ ฅ์ด ํ• ๋‹น๋œ๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์—์„œ ๊ฐ FP๋Š” ๋‹ค์‹œ ๋งคํฌ๋กœ ์ „์šฉ ๋ถ€๋ถ„(macro-dedicated portion), ๊ณต์šฉ ๋ถ€๋ถ„(shared portion), ๊ทธ๋ฆฌ๊ณ  ํŽจํ†  ์ „์šฉ ๋ถ€๋ถ„(femto-dedicated portion)์œผ๋กœ ๊ตฌ์„ฑ๋˜๊ณ , ์ด ์„ธ ๋ถ€๋ถ„์˜ ๋น„์œจ์€ FP๋งˆ๋‹ค ๋‹ค๋ฅด๊ฒŒ ์„ค์ •๋œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์€ ์ตœ์ ํ™” ๋ฐฉ์‹์„ ์ด์šฉํ•˜์—ฌ ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์„ ์ตœ๋Œ€ํ™”ํ•˜๋„๋ก ๊ฐ FP ๋‚ด ์ž์› ๋ถ„ํ•  ๋น„์œจ์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๊ณตํ•ญ ๋ฐ ์‡ผํ•‘๋ชฐ๊ณผ ๊ฐ™์ด ์‚ฌ์šฉ์ž๋“ค์ด ๋ฐ€์ง‘๋œ ๊ณต๊ณต์žฅ์†Œ์— ๋งŽ์€ ์ˆ˜์˜ ํŽจํ†  ๊ธฐ์ง€๊ตญ๋“ค์ด ์„ค์น˜๋œ ๊ฐœ๋ฐฉํ˜• ํŽจํ† ์…€ ๋„คํŠธ์›Œํฌ์—์„œ ์—๋„ˆ์ง€ ํšจ์œจ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ณ ๋ คํ•˜๋Š” ํŽจํ† ์…€ ๋„คํŠธ์›Œํฌ์—์„œ๋Š” ํŽจํ†  ๊ธฐ์ง€๊ตญ๋“ค์ด ์ตœ๋Œ€ ํŠธ๋ž˜ํ”ฝ ๋ถ€ํ•˜๋ฅผ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด ๋†’์€ ๋ฐ€๋„๋กœ ์„ค์น˜๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋ถ€๋ถ„์˜ ๋™์ž‘ ์‹œ๊ฐ„ ๋™์•ˆ ํŽจํ† ์…€๋“ค์€ ๋ฌด์„  ์ž์›์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์šฉ์ž๋“ค์˜ ์…€ ์ ‘์†์„ ์ ์ ˆํžˆ ์กฐ์ •ํ•˜์—ฌ ๊ฐ€๋Šฅํ•œ ์ ์€ ํŽจํ†  ๊ธฐ์ง€๊ตญ๋“ค์„ ํ™œ์„ฑํ™”์‹œํ‚ค๊ณ  ๊ทธ ์ด์™ธ์˜ ํŽจํ†  ๊ธฐ์ง€๊ตญ๋“ค์„ ์ˆ˜๋ฉด ๋ชจ๋“œ(sleep mode)๋กœ ๋™์ž‘์‹œํ‚จ๋‹ค๋ฉด ํ•ด๋‹น ํŽจํ† ์…€ ์„ค์น˜ ์ง€์—ญ์—์„œ์˜ ๋„คํŠธ์›Œํฌ ์—๋„ˆ์ง€ ํšจ์œจ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ํŽจํ†  ๊ธฐ์ง€๊ตญ์˜ ๋™์ž‘ ๋ชจ๋“œ(active ๋˜๋Š” sleep)์™€ ์‚ฌ์šฉ์ž๋“ค์˜ ์…€ ์ ‘์†์„ ๋™์‹œ์— ๊ฒฐ์ •ํ•˜๋Š” ํŽจํ†  ๊ธฐ์ง€๊ตญ ๋™์ž‘ ๋ชจ๋“œ ๊ฒฐ์ • ๋ฐ ์‚ฌ์šฉ์ž ์ ‘์† (femto BS sleep decision and user association, SDUA) ๊ธฐ๋ฒ•์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์—์„œ SDUA ๋ฌธ์ œ๋Š” ์‚ฌ์šฉ์ž๋“ค์—๊ฒŒ ๋งŒ์กฑํ•  ๋งŒํ•œ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋ฉด์„œ ์ „์ฒด ์—๋„ˆ์ง€ ์†Œ๋ชจ๋ฅผ ์ตœ์†Œ๋กœ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •์‹ํ™”๋˜์—ˆ๋‹ค. SDUA ๋ฌธ์ œ๋Š” ๊ธฐ์ง€๊ตญ์˜ ๋™์ž‘ ๋ชจ๋“œ์™€ ์‚ฌ์šฉ์ž์˜ ์…€ ์ ‘์†์ด ์ƒํ˜ธ ์˜ํ–ฅ์„ ์ฃผ์–ด์„œ ๊ณ„์‚ฐ ๋ณต์žก๋„๊ฐ€ ๋†’์œผ๋ฏ€๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋จผ์ € ํ™œ์„ฑํ™” ํŽจํ†  ๊ธฐ์ง€๊ตญ๋“ค์˜ ์ง‘ํ•ฉ์ด ์ฃผ์–ด์ง„ ์ƒํƒœ์—์„œ ์ตœ์ ์˜ ์‚ฌ์šฉ์ž ์ ‘์†(user association, UA) ๋ฌธ์ œ๋ฅผ ํ’€๊ณ , ๊ฐ๊ธฐ ๋‹ค๋ฅธ ์ง‘ํ•ฉ๋“ค์— ๋Œ€ํ•ด์„œ ์ตœ์ ํ™” UA๋ฅผ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ์ตœ์„ ์˜ ํ™œ์„ฑํ™” ํŽจํ†  ๊ธฐ์ง€๊ตญ ์ง‘ํ•ฉ์„ ์ฐพ๋Š” ํœด๋ฆฌ์Šคํ‹ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋‘ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•๋“ค์ด ๊ฐ๊ฐ ์ฃผํŒŒ์ˆ˜ ํšจ์œจ๊ณผ ์—๋„ˆ์ง€ ํšจ์œจ์— ๋Œ€ํ•ด์„œ ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค.Femtocell has received wide attention as a promising solution to meet explosively increasing traffic demand in cellular networks, since it can provide high quality data services to indoor users at low cost. In this thesis, we study resource management in two-tier femtocell networks where the femtocells are underlaid by macrocells, from two different aspects: spectral effciency and energy eciency. First, we design a downlink radio resource partitioning scheme between femtocells and their overlaid macrocell to enhance the spectral eciency. We consider that the overlaid macrocell network adopts the fractional frequency reuse (FFR) techniques, which is also one of solutions to the mobile data surge problem. With FFR, the frequency band of a macrocell is divided into several frequency partitions (FPs) and the transmission power levels assigned to FPs differ from each other. With the proposed scheme, every FP is divided into the macro-dedicated, the shared, and the femto-dedicated portions. The ratio of these three portions is different for each FP. We suggest a method to determine a proper ratio of portions in each FP, by using optimization approach. Next, we propose a scheme to enhance the energy efficiency in open access femtocell networks where many femto base stations (BSs) are deployed in a large public area such as office building, shopping mall, etc. In those areas, the femtocells are overlapped and underutilized during most of the operation time because femto BSs are densely deployed to support the peak traffic load. So, if we properly coordinate the user association with cells and put the femto BSs having no associated users to sleep, the network energy efficiency in the femtocell deployment area can be greatly enhanced. Therefore, we propose a femto BS sleep decision and user association (SDUA) scheme that jointly determines the operation modes (i.e., active or sleep) of femto BSs and the association between users and the active BSs. The SDUA problem is formulated as an optimization problem that aims at minimizing the total energy consumption while providing the satisfied service to users. Since the SDUA problem is too complicated to be solved, we first solve the optimal user association (UA) problem for given set of active femto BSs and then design a heuristic algorithm that finds the best set of active femto BSs by iteratively performing the optimal UA with each different set. By simulation, it is shown that the proposed schemes achieve their design goals properly and outperform existing schemes.1 Introduction 1.1 Background and Motivation 1.2 Proposed Resource Management Schemes 1.2.1 Radio Resource Partitioning Scheme for Spectral Efficiency Enhancement 1.2.2 Base Station Sleep Management Scheme for Energy Efficiency Enhancement 1.3 Organization 2 Radio Resource Partitioning Scheme for Spectral Efficiency Enhancement 2.1 System Model 2.1.1 Heterogeneous Network 2.1.2 Capacity Model 2.2 Proposed Downlink Radio Resource Partitioning Scheme 2.2.1 Macrocell Protection Mechanism 2.2.2 Determination of Dedicated Portion for Macrocell/Femtocell Users 2.3 Capacity Estimation 2.3.1 Achievable Macrosector Capacity 2.3.2 Achievable Femtocell Capacities 2.3.3 SHG Availability of Femtocell 3 Base Station Sleep Management Scheme for Energy Efficiency Enhancement 3.1 System Model 3.1.1 Open Access Femtocell Network 3.1.2 Operation Modes and Power Consumption of a BS 3.1.3 Energy Efficiency 3.2 Analysis on Energy Efficiency 3.2.1 Mathematical Model 3.2.2 Derivation of Energy Efficiency 3.2.3 Numerical Results and Discussion 3.3 Proposed Femto BS Sleep Decision and User Association (SDUA)Scheme 3.3.1 Problem Formulation 3.3.2 Solution Approach 3.3.3 Implementation Example of SIR Estimation 4 Performance Evaluation 4.1 Radio Resource Partitioning Scheme 4.1.1 Simulation Model 4.1.2 Simulation Results 4.2 Base Station Sleep Management Scheme 4.2.1 Simulation Model 4.2.2 Simulation Results 5 Conclusion Bibliography AbstractDocto
    corecore