3 research outputs found

    Transient Performance Analysis of Serial Production Lines

    Get PDF
    TRANSIENT PERFORMANCE ANALYSIS OF SERIAL PRODUCTION LINES by Yang Sun The University of Wisconsin-Milwaukee, 2015 Under the Supervision of Professor Liang Zhang Production lines with unreliable machines and finite buffers are characterized by both steady-state performance and transient behavior. The steady-state performance has been analyzed extensively for over 50 years. Transient behavior, however, is rarely studied and remains less explored. In practice, a lot of the real production systems are running partially or entirely in transient periods. Therefore, transient analysis is of significant practical importance. Most of the past research on production systems focuses on discrete materials flow which utilities Markov chain analysis. This dissertation is devoted to investigate the effects of system parameters on performance measures for transient serial production line with other machine reliability models. The reliability models investigated in this dissertation are exponential and no-exponential (Weibull, Gamma, Log-normal). In a real production line system, machine reliability models are much more difficult to identify. Strictly speaking, it requires the identifications of the histograms of up- and downtime, which requires a very large number of measurements during a long period of time. The result may be that the machines\u27 real reliability model on the factory floor are, practically, never known. Therefore, it is of significant practical importance to investigate the general effects of system parameters on performance measures for transient serial production line with different reliability models. The system parameters include machine efficiency e, ratio of N and Tdown (K), machines\u27 average downtime Tdown, and coefficient of variation CV. The performance measures include settling time of production rate (t_sPR), settling time of work-in-process (t_sWIP), total production (TP), production loss (PL). The relationship between the performance measures and system parameters reveals the fundamental principles that characterize the behavior of such systems and can be used as a guideline for product lines\u27 management and improvement. Most previous research studies are limited to two or three machine system due to the technical complexity. Furthermore, presently there are no analytical tools to address the problems with multiple machines and buffers during transient periods. This dissertation addresses this problem by using simulations with C++ programming to evaluate the multiple machines (up to 10) and buffers and demonstrate the transient performance at different conditions. The simulation method does not only provide quantified transient performance results for a given production line, but also provides a valuable tool to investigate the system parameter effects and how to manage and improve the existing production line

    Real-Time Analysis and Control of Serial Production Lines for Energy Efficient Manufacturing

    Get PDF
    Productivity analysis, operation control and energy consumption reduction have been the central topics in manufacturing research and practice. They are closely related to each other. Control of production operations is considered as one of the most economical methods to improve energy efficiency in manufacturing systems, while system performance analysis serves as the base of production control. On the other hand, effective operation control can result to energy efficiency in manufacturing. Steady state analysis has been investigated extensively; however, transient analysis remained largely unexplored. Our research focuses on system modeling, performance analysis, and real-time operation control of serial production lines with unreliable machines and finite buffers, especially in transient period, with Bernoulli or geometric reliability. Analytical results, practical case studies and applications for energy efficient manufacturing are provided. A simulation using ARENA software to reproduce and analyze brewery production line is performed

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented
    corecore