12,327 research outputs found

    Machine learning for early detection of traffic congestion using public transport traffic data

    Get PDF
    The purpose of this project is to provide better knowledge of how the bus travel times is affected by congestion and other problems in the urban traffic environment. The main source of data for this study is second-level measurements coming from all buses in the Linköping region showing the location of each vehicle.The main goal of this thesis is to propose, implement, test and optimize a machine learning algorithm based on data collected from regional buses from Sweden so that it is able to perform predictions on the future state of the urban traffic.El objetivo principal de este proyecto es proponer, implementar, probar y optimizar un algoritmo de aprendizaje automático basado en datos recopilados de autobuses regionales de Suecia para que poder realizar predicciones sobre el estado futuro del tráfico urbano.L'objectiu principal d'aquest projecte és proposar, implementar, provar i optimitzar un algoritme de machine learning basat en dades recollides a partir d'autobusos regionals de Suècia de manera per poder realitzar prediccions sobre l'estat futur del trànsit urbà

    Integer Echo State Networks: Hyperdimensional Reservoir Computing

    Full text link
    We propose an approximation of Echo State Networks (ESN) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed Integer Echo State Network (intESN) is a vector containing only n-bits integers (where n<8 is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The intESN architecture is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs; classifying time-series; learning dynamic processes. Such an architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss.Comment: 10 pages, 10 figures, 1 tabl

    Adversarial Learning for Chinese NER from Crowd Annotations

    Full text link
    To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.Comment: 8 pages, AAAI-201

    Learning Dynamic Classes of Events using Stacked Multilayer Perceptron Networks

    Full text link
    People often use a web search engine to find information about events of interest, for example, sport competitions, political elections, festivals and entertainment news. In this paper, we study a problem of detecting event-related queries, which is the first step before selecting a suitable time-aware retrieval model. In general, event-related information needs can be observed in query streams through various temporal patterns of user search behavior, e.g., spiky peaks for popular events, and periodicities for repetitive events. However, it is also common that users search for non-popular events, which may not exhibit temporal variations in query streams, e.g., past events recently occurred, historical events triggered by anniversaries or similar events, and future events anticipated to happen. To address the challenge of detecting dynamic classes of events, we propose a novel deep learning model to classify a given query into a predetermined set of multiple event types. Our proposed model, a Stacked Multilayer Perceptron (S-MLP) network, consists of multilayer perceptron used as a basic learning unit. We assemble stacked units to further learn complex relationships between neutrons in successive layers. To evaluate our proposed model, we conduct experiments using real-world queries and a set of manually created ground truth. Preliminary results have shown that our proposed deep learning model outperforms the state-of-the-art classification models significantly.Comment: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, 6 pages, 4 figure
    • …
    corecore