232,374 research outputs found

    MAP: Medial Axis Based Geometric Routing in Sensor Networks

    Get PDF
    One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, the length of the communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing Protocol that does not require locations, makes routing decisions locally, and achieves good load balancing. In its preprocessing phase, MAP constructs the medial axis of the sensor field, defined as the set of nodes with at least two closest boundary nodes. The medial axis of the network captures both the complex geometry and non-trivial topology of the sensor field. It can be represented compactly by a graph whose size is comparable with the complexity of the geometric features (e.g., the number of holes). Each node is then given a name related to its position with respect to the medial axis. The routing scheme is derived through local decisions based on the names of the source and destination nodes and guarantees delivery with reasonable and natural routes. We show by both theoretical analysis and simulations that our medial axis based geometric routing scheme is scalable, produces short routes, achieves excellent load balancing, and is very robust to variations in the network model

    SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels

    Full text link
    We present Spline-based Convolutional Neural Networks (SplineCNNs), a variant of deep neural networks for irregular structured and geometric input, e.g., graphs or meshes. Our main contribution is a novel convolution operator based on B-splines, that makes the computation time independent from the kernel size due to the local support property of the B-spline basis functions. As a result, we obtain a generalization of the traditional CNN convolution operator by using continuous kernel functions parametrized by a fixed number of trainable weights. In contrast to related approaches that filter in the spectral domain, the proposed method aggregates features purely in the spatial domain. In addition, SplineCNN allows entire end-to-end training of deep architectures, using only the geometric structure as input, instead of handcrafted feature descriptors. For validation, we apply our method on tasks from the fields of image graph classification, shape correspondence and graph node classification, and show that it outperforms or pars state-of-the-art approaches while being significantly faster and having favorable properties like domain-independence.Comment: Presented at CVPR 201

    Mapping Wide Row Crops with Video Sequences Acquired from a Tractor Moving at Treatment Speed

    Get PDF
    This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird’s-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods
    • 

    corecore