5 research outputs found

    Non-rigid registration of 2-D/3-D dynamic data with feature alignment

    Get PDF
    In this work, we are computing the matching between 2D manifolds and 3D manifolds with temporal constraints, that is we are computing the matching among a time sequence of 2D/3D manifolds. It is solved by mapping all the manifolds to a common domain, then build their matching by composing the forward mapping and the inverse mapping. At first, we solve the matching problem between 2D manifolds with temporal constraints by using mesh-based registration method. We propose a surface parameterization method to compute the mapping between the 2D manifold and the common 2D planar domain. We can compute the matching among the time sequence of deforming geometry data through this common domain. Compared with previous work, our method is independent of the quality of mesh elements and more efficient for the time sequence data. Then we develop a global intensity-based registration method to solve the matching problem between 3D manifolds with temporal constraints. Our method is based on a 4D(3D+T) free-from B-spline deformation model which has both spatial and temporal smoothness. Compared with previous 4D image registration techniques, our method avoids some local minimum. Thus it can be solved faster and achieve better accuracy of landmark point predication. We demonstrate the efficiency of these works on the real applications. The first one is applied to the dynamic face registering and texture mapping. The second one is applied to lung tumor motion tracking in the medical image analysis. In our future work, we are developing more efficient mesh-based 4D registration method. It can be applied to tumor motion estimation and tracking, which can be used to calculate the read dose delivered to the lung and surrounding tissues. Thus this can support the online treatment of lung cancer radiotherapy

    Effective Volumetric Feature Modeling and Coarse Correspondence via Improved 3DSIFT and Spectral Matching

    Get PDF
    This paper presents a nonrigid coarse correspondence computation algorithm for volumetric images. Our matching algorithm first extracts then correlates image features based on a revised and improved 3DSIFT (I3DSIFT) algorithm. With a scale-related keypoint reorientation and descriptor construction, this feature correlation is less sensitive to image rotation and scaling. Then, we present an improved spectral matching (ISM) algorithm on correlated features to obtain a one-to-one mapping between corresponded features. One can effectively extend this feature correspondence to dense correspondence between volume images. Our algorithm can benefit nonrigid volumetric image registration in many tasks such as motion modeling in medical image analysis and processing

    Efficient Dense 3D Reconstruction Using Image Pairs

    Get PDF
    The 3D reconstruction of a scene from 2D images is an important topic in the _x000C_eld of Computer Vision due to the high demand in various applications such as gaming, animations, face recognition, parts inspections, etc. The accuracy of a 3D reconstruction is highly dependent on the accuracy of the correspondence matching between the images. For the purpose of high accuracy of 3D reconstruction system using just two images of the scene, it is important to _x000C_nd accurate correspondence between the image pairs. In this thesis, we implement an accurate 3D reconstruction system from two images of the scene at di_x000B_erent orientation using a normal digital camera. We use epipolar geometry to improvise the performance of the initial coarse correspondence matches between the images. Finally we calculate the reprojection error of the 3D reconstruction system before and after re_x000C_ning the correspondence matches using the epipolar geometry and compare the performance between them. Even though many feature-based correspondence matching techniques provide robust matching required for 3D reconstruction, it gives only coarse correspondence matching between the images. This is not su_x000E_cient to reconstruct the detailed 3D structure of the objects. Therefore we use our improvised image matching to calculate the camera parameters and implement dense image matching using thin-plate spline interpolation, which interpolates the surface based on the initial control points obtained from coarse correspondence matches. Since the thin-plate spline interpolates highly dense points from a very few control points, the correspondence mapping between the images are not accurate. We propose a new method to improve the performance of the dense image matching using epipolar geometry and intensity based thin-plate spline interpolation. We apply the proposed method for 3D reconstruction using two images. Finally, we develop systematic evaluation for our dense 3D reconstruction system and discuss the results

    Heterogeneous volumetric data mapping and its medical applications

    Get PDF
    With the advance of data acquisition techniques, massive solid geometries are being collected routinely in scientific tasks, these complex and unstructured data need to be effectively correlated for various processing and analysis. Volumetric mapping solves bijective low-distortion correspondence between/among 3D geometric data, and can serve as an important preprocessing step in many tasks in compute-aided design and analysis, industrial manufacturing, medical image analysis, to name a few. This dissertation studied two important volumetric mapping problems: the mapping of heterogeneous volumes (with nonuniform inner structures/layers) and the mapping of sequential dynamic volumes. To effectively handle heterogeneous volumes, first, we studied the feature-aligned harmonic volumetric mapping. Compared to previous harmonic mapping, it supports the point, curve, and iso-surface alignment, which are important low-dimensional structures in heterogeneous volumetric data. Second, we proposed a biharmonic model for volumetric mapping. Unlike the conventional harmonic volumetric mapping that only supports positional continuity on the boundary, this new model allows us to have higher order continuity C1C^1 along the boundary surface. This suggests a potential model to solve the volumetric mapping of complex and big geometries through divide-and-conquer. We also studied the medical applications of our volumetric mapping in lung tumor respiratory motion modeling. We were building an effective digital platform for lung tumor radiotherapy based on effective volumetric CT/MRI image matching and analysis. We developed and integrated in this platform a set of geometric/image processing techniques including advanced image segmentation, finite element meshing, volumetric registration and interpolation. The lung organ/tumor and surrounding tissues are treated as a heterogeneous region and a dynamic 4D registration framework is developed for lung tumor motion modeling and tracking. Compared to the previous 3D pairwise registration, our new 4D parameterization model leads to a significantly improved registration accuracy. The constructed deforming model can hence approximate the deformation of the tissues and tumor

    Feature-aligned 4D spatiotemporal image registration

    No full text
    In this paper, we develop a feature-aware 4D spatiotemporal image registration method. Our model is based on a 4D (3D+time) free-form B-spline deformation model which has both spatial and temporal smoothness. We first introduce an automatic 3D feature extraction and matching method based on an improved 3D SIFT descriptor, which is scale- and rotation- invariant. Then we use the results of feature correspondence to guide an intensity-based deformable image registration. Experimental results show that our method can lead to smooth temporal registration with good matching accuracy; therefore this registration model is potentially suitable for dynamic tumor tracking. © 2012 ICPR Org Committee
    corecore