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This paper presents a nonrigid coarse correspondence computation algorithm for volumetric images. Our matching algorithm first
extracts then correlates image features based on a revised and improved 3DSIFT (I3DSIFT) algorithm.With a scale-related keypoint
reorientation and descriptor construction, this feature correlation is less sensitive to image rotation and scaling.Then, we present an
improved spectralmatching (ISM) algorithmon correlated features to obtain a one-to-onemapping between corresponded features.
One can effectively extend this feature correspondence to dense correspondence between volume images. Our algorithm can benefit
nonrigid volumetric image registration in many tasks such as motion modeling in medical image analysis and processing.

1. Introduction

Establishing spatial correspondence between volume images
is an important and fundamental computational problem in
3D image and video processing. It can greatly benefit many
tasks such as nonrigid image registration [1–4], registration
evaluation [5–8], volumetric ultrasound panorama [9], object
recognition [10], and three-dimensional classification [11],
to name a few. In biomedical computation, many medical
scans (CT andMRI) are volumetric images, whose spatial and
temporal correspondence are critical in clinical monitoring,
diagnosis, and treatment planning [12–14]. However, robust
volumetric images registration is often challenging due to the
nonrigid characteristics of the deformations of the organs and
tissues.

A nonrigid registration is often formulated as a nonlinear
optimization which is usually nonconvex and very expensive
to solve. Feature correspondence suggests desirable initial
guess to this optimization problem which can improve the
computation efficiency. Furthermore, it can be adopted as
an extra guidance in the dense registration computation

to overcome many undesirable local minima and obtain a
reliable global solution.

In 2D image registration, the SIFT descriptor and its
variants [15, 16] arewidely adopted featuremodelingmethods
due to their great robustness and discrimination power.
3DSIFT [17–19] generalizes the 2D SIFT into volumetric
images and has been demonstrated to be effective in volume
image matching problems. However, the existing 3DSIFT
algorithms are still inadequate in handling dynamically
deforming volumetric images such as aforementioned med-
ical images, due to their sensitivity against image rota-
tion and scaling. Also, the extracted feature correspon-
dences using local descriptors are usually many-to-many
and include mismatches. We need a reliable correspondence
selection/refinement algorithm to remove mismatches and
obtain an objective mapping between feature point sets
extracted from the source and target images. In the recent
computer vision literature, such a correspondence refinement
procedure is often formulated as a graph matching problem;
Leordeanu and Hebert [20] proposed an efficient and effec-
tive spectral algorithm to solve this graph matching problem.
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In this work, we propose a volumetric image matching
algorithm in a three-step pipeline: (1) feature extraction and
initial correlation, (2) feature matching and correspondence
refinement, and (3) extending the coarse correspondence
(feature matching) to dense intervolume correspondence.
Specifically, consider the following:

(1) we develop an improved 3DSIFT (I3DSIFT) descrip-
tor that is less sensitive to rotation and scaling,
to reliably extract feature correspondences between
given volumes;

(2) we propose an improved spectral matching (ISM)
algorithm that can more effectively refine the ini-
tial feature correlation and obtain correct matching
between corresponding features;

(3) we implement a spline fitting algorithm to extend
these coarse correspondences to dense intervolume
correspondences.

The remainder of this paper is organized as follows.
We briefly review related work in Section 2. After giving an
overview of our algorithm pipeline in Section 3, we elaborate
the three steps of this pipeline in Sections 4, 5, and 6. Some
volumetric matching results are shown in Section 7 and one
application on the motion modeling of medical images is
shown in Section 8.

2. Related Work

Our algorithmof computing dense correspondences between
volumetric data is guided by coarse correspondences between
features. The major challenges and our contributions in this
work lie in the robust extraction and matching of features.
Therefore, we mainly discuss related work in these fields.

2.1. Extraction of Correlated Features. Volumetric feature
extraction is the process to build coarse correspondences
between volume images. It has been widely studied.

Scovanner et al. [17] first proposed the 3DSIFT descriptor
and showed its application in action recognition. Their work
is only on 3DSIFT descriptor construction and does not
suggest feature correspondences construction. Furthermore,
their descriptor is sensitive to scaling and rotation change.
Ni et al. [9] implemented a 3DSIFT algorithm for feature
extraction and applied it in volumetric ultrasound panorama.
They extended scale space extreme detection and dominant
direction reorientation step of SIFT to 3DSIFT. However,
they did not utilize scale information so that their method is
sensitive to scaling change. Cheung and Hamarneh extended
SIFT to the so-called N-dimension SIFT (N-SIFT) [18]. They
demonstrated its effectiveness using synthetic experiments
on volumetric MRI and 4DCT data matching. However, N-
SIFT algorithm is still sensitive to both scaling and rota-
tion. Allaire et al. [19] proposed a full 3DSIFT algorithm.
They filtered out potential keypoints that either have low
contrast or locate on edges or ridges. But many correct
corresponding keypoints are filtered out unnecessarily. As
a result, only 0.1%∼8% of potential keypoints were kept,
which is sometimes too few for reliable volumetric matching.

Also, this 3DSIFT is sensitive to scale change. Cheung
and Hamarneh [18] also proposed the global histogram
feature and reoriented global histogram feature. Both of
them use single histogram on a keypoint region, while the
latter has an additional reorientation step. The reoriented
global histogram feature normalizes the direction of the
gradients with respect to the highest peak in the histogram
to increase robustness to orientation change. Unfortunately,
both are less discriminative than N-SIFT for the lack of
space information. Han [21] proposed a method based on
3DSURF. It is based on the partial derivatives of local regions
and their absolute values. Therefore, 3DSURF is sensitive to
noise.

2.2. Feature Correspondence Refinement. Feature extraction
and matching algorithms depending on local descriptors
usually compute a set of correspondences between feature
pairs. Some correspondences are many-to-many and some
are mismatches. In order to provide correct and one-to-
one matching for the subsequent dense correspondence
computation, a refinement is needed. The RANdom SAm-
ple Consensus (RANSAC) algorithm [22, 23] is a widely
adopted randomized algorithm that iteratively estimates
correspondences and eliminates outliers. It starts with a small
feasible dataset and enlarges this set with consistent data
correspondences when possible. The RANSAC algorithm is
nondeterministic and is only stable in a probabilistic sense. In
Xu et al. [24], we used 3DSIFT to extract features and applied
RANSAC to obtain the feature matching.

Spectral matching [20, 25], on the other hand, is a
deterministic algorithm that has been reported with better
efficiency [20]. In spectral matching, a correspondence set
is treated as a bipartite graph. It is based on the observa-
tion that correct matches corelate with each other strongly,
while incorrect matches corelate with each other accidently.
Despite its successful application when the bipartite graph
is connected, how well the algorithm works when the
graph is not connected (which is the case in our pipeline)
is not clear.

3. Algorithm Overview

In the paper, we propose a pipeline to find dense correspon-
dences between volumetric images. The pipeline has three
steps.

(1) Given two volume images 𝐼

𝐹
and 𝐼

𝑀
, we extract

an initial coarse correspondence set 𝐿(𝐼
𝐹
, 𝐼

𝑀
) using

a revised 3DSIFT (I3DSIFT) algorithm. This initial
coarse correspondence set 𝐿 contains all the potential
correspondences between features on 𝐼

𝐹
and features

on 𝐼

𝑀
. In the following 𝐿 is called the potential corre-

spondence set or initial correspondence set (Section 4).

(2) Some correspondences in 𝐿 are mismatches; there-
fore, we perform a revised spectral matching (ISM)
algorithm to filter them out and get a refined coarse
correspondence set 𝐿󸀠 (Section 5).
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Figure 1: The four-step pipeline of I3DSIFT. (a) A small amount of the detected keypoints is illustrated. (b) The orientation of a pixel is
computed. (c) A keypoint’s surrounding region is reoriented according to its dominant direction 𝛼. (d) 3DSIFT descriptor construction. Note
that we draw fixed size regions in (c) and (d) for convenient visualization while both steps actually use scale-related region in I3DSIFT.

(3) Finally, we perform a B-spline fitting algorithm,
guided by 𝐿

󸀠, to compute the dense correspondences
between 𝐼

𝐹
and 𝐼

𝑀
(Section 6).

4. Revised 3DSIFT

As discussed in Section 2, a reliable feature extraction algo-
rithm should be insensitive to scaling and rotation change.
We implement a revised 3DSIFT (I3DSIFT) algorithm con-
sisting of four main steps: keypoint detection, orientation
assignment, direction reorientation, and descriptor construc-
tion. Figure 1 illustrates the feature extraction through these
steps. The main changes on I3DSIFT are in the direction
reorientation and descriptor construction. We propose a
scale-related region definition method in these two steps.
Moreover, 5-linear interpolation and feature normalization
are introduced in the descriptor construction step to improve
the robustness. Compared with the original 3DSIFT with
fixed-size region definition, I3DSIFT is insensitive to rotation
and scaling transformations. We will elaborate these four
steps in the following.

Keypoint detection is an essential procedure in volu-
metric image matching. In 3DSIFT, scale space extrema
are identified as keypoints. The detection is based on the
scale space theory [26, 27]. In real implementation, DoG
(difference of Gaussian) [15, 28] is usually adopted to detect

keypoints. Given a volume image, its DOG images can be
defined as a stack of images that are smoothed using series
of DoG functions with the variable 𝜎. For efficiency, an
image pyramid with 𝑁 octaves and 𝑆 levels per octave is
implemented to represent DoG images. The extremes of 3
× 3 × 3 × 3 across scale in each octave are defined as
keypoints.The 𝜎 of the Gaussian image in which the keypoint
shows up is selected as the keypoint’s scale. For example, a
keypoint that shows up on the 𝑠th level image, its scale 𝑐 is
assigned as 𝑐 = 2

𝑠/𝑆
𝜎. The scale of a keypoint can represent

its surrounding feature region size (e.g., keypoint with big
scale has a big feature region and vice versa). Therefore, we
implement a scale-related region definition method in the
following direction reorientation and descriptor construction
steps.

Orientation assignment provides pixel attributes for
descriptor construction. It has been shown that gradient-
based descriptors, such as SIFT [15], are more discriminative
than intensity-based descriptors [16]. 3DSIFT is a gradient-
based descriptor. Voxel gradient can be depicted according
to its azimuth (𝜃, 𝜃 ∈ [0, 360)), elevation (𝜑, 𝜑 ∈ [0, 180)),
and magnitude (𝑚

3D).
Direction reorientation is an essential procedure to deal

with image rotation. It includes two steps: dominant direction
definition and keypoint region reorientation. In the previous
3DSIFT algorithms [17], the size of the keypoint regions is
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defined as a constant (e.g., sized 16 × 16 × 16). However,
this definition does not distinguish keypoints with different
feature regions. Keypoints with small feature regions have
the same size of keypoint regions with the large ones.
Accordingly, the definition of the dominant direction is not
accurate. In the paper, inspired by SIFT [15], we implement a
direction reorientation step that is related to scale. Our size
of the keypoint region for orientation definition is defined as
𝐾 ∗ 𝑐, where 𝐾 is a user-defined parameter and 𝑐 is the scale
of the keypoint defined above. The definition of 𝐾 is related
to the content of volume images. In our lung CT images
application, we set 𝐾 = 6. Consequently, this definition is
more accurate.

Descriptor construction is to build description for each
keypoint. In order to design a 3DSIFT descriptor that is
insensitive to scale change, similarly, we adore a scale-related
descriptor region. We set the region size 12𝑐 × 12𝑐 × 12𝑐.
After subdivision of the descriptor region into 4 × 4 ×

4 subregions, we add magnitudes of the pixels in each
subregion (its size is 3𝑐) according to its 𝜃 and 𝜑. In order
to avoid all boundary effects that the descriptor abruptly
changes as a sample shifts from being within one subregion
to another or one orientation to another during this step,
we implement a 5-linear interpolation method to interpolate
within three subregion dimensions (𝑋, 𝑌, and 𝑍) and two
gradient orientations (𝜃(𝑥, 𝑦, 𝑧) and 𝜑(𝑥, 𝑦, 𝑧)). Each entry
into a bin ismultiplied by aweight of 1−𝑑 for each dimension,
where 𝑑 is the distance of the sample from central value of the
bin as measured in units of the histogram bin spacing. Then,
we join the feature of these subregions and get the descriptor.
In order to discard information due to noise or illumination,
we normalize the descriptor to [0, 1] and discard features
below a threshold (0.2 in the paper) by setting it as 0. Finally
we normalize the descriptor into [0, 1] and get the final
descriptor.

5. Revised Spectral Matching

After initial feature extraction and matching (Section 4), we
obtain an initial correspondence set 𝐿, indicating potential
matches between features on 𝐼

𝐹
and 𝐼

𝑀
. To filter out incorrect

matches, we can use the spectral matching algorithm. Com-
pared with the well-knownRANSAC [22] algorithm, spectral
matching is in general more efficient [20, 25], especially when
a good initial correspondence set 𝐿 is given.

5.1. Basic Idea of Spectral Matching. Spectral matching is an
efficient spectral method to find consistent correspondences
in an initial correspondence set 𝐿. An assignment graph
𝐺 is assigned to represent 𝐿. Each node represents a cor-
respondence, while the weights on the edges represent the
pairwise agreements between the correspondences. 𝐺 can be
represented by an affinity matrix 𝑀. The definition of 𝑀 is
shown as follows:

𝑀(𝑎, 𝑏) =

{

{

{

{

{

{

{

4.5 −

(𝑑

𝑖𝑗
− 𝑑

𝑖
󸀠
𝑗
󸀠)

2

2𝜎

2

𝑑

if 󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑖𝑗
− 𝑑

𝑖
󸀠
𝑗
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

< 3𝜎

𝑑

0 otherwise,
(1)

where 𝑎 = (𝑖, 𝑖

󸀠
) and 𝑏 = (𝑗, 𝑗

󸀠
) are two correspondences from

the potential correspondence set. 𝑑
𝑖𝑗
is the distance between

points 𝑖 and 𝑗, the same as 𝑑
𝑖
󸀠
𝑗
󸀠 .𝑀 is a nonnegative symmetric

matrix and each𝑚

𝑎𝑏
encodes the pairwise agreement of right

matches between 𝑎 and 𝑏 correspondences.
The basic idea of spectral matching is from an obser-

vation: correct assignments are likely to establish link with
each other and thus form a strongly connected cluster, while
incorrect correspondences establish links with others only
accidently so that they are unlikely to belong to strongly
connected clusters. Accordingly, correct matches form a
strong cluster in 𝑀, while incorrect matches do not. This
phenomenon can be illustrated by the principal eigenvec-
tor of 𝑀 (denoted as V𝑝). The elements of V𝑝 represent
the confidence of each match. Correct matches have big
values in V𝑝, while incorrect matches have small ones.
Consequently, a greedy selection method based on V𝑝 is
presented to pick out the correct matches. Intuitively, the
matches are picked based on the elements from big value
to small value, while the one-one matching constraint is
considered.

5.2. A Revision on Spectral Matching. The basic idea of
spectral matching is strongly based on the analysis of the
affinity matrix 𝑀 and the assignment graph 𝐺. When most
of the elements in𝑀 are larger than 0,𝐺 usually corresponds
to a connected graph; when most of them are 0, 𝐺 usually
corresponds to a unconnected graph.

The basic spectral matching algorithm works well when
𝐺 is highly connected. However, when a discriminative
descriptor was used to establish the potential correspondence
set, the mismatch pairs have been significantly reduced, and
𝐺 is often sparsely connected or even not fully unconnected
(see Figures 2(a)–2(c)). For such graphs, the basic spectral
matching algorithms have the following problems.

The first problem is the theoretical error on unconnected
graphs for spectral matching. As was mentioned above, spec-
tralmatching can be illustrated by the principal eigenvector of
𝑀. However, this is not true when𝑀 is not a primitivematrix
(i.e., 𝑀 corresponds to a unconnected graph) according
to the Perron-Frobenius theorem [29]. Directly applying
spectral matching on unconnected graphs is theoretically
unsupported.

The second problem is the failure on filtering out unobvi-
ous wrong matches. Spectral matching considers all the pos-
itive values in V𝑝. It can filter out those matches whose values
equal zero or which do not meet the matching constraint.
However, when wrong matches have some connection with
others they have positive value in V𝑝. Spectral matching can
not filter them out correctly.

The existing spectral matching algorithms [20, 25] can
not work well when 𝐺 is unconnected, specifically, when
initial correspondences in 𝐿 are almost one-one matching.
In this work we present a revised spectral matching (ISM) to
overcome these problems (see Figures 2(d)–2(f)).

First,𝑀 is decomposed into several submatrices. Suppose
that 𝑀 has 𝑟, 𝑟 ≥ 1 connected components; it can
be decomposed into 𝑟 primitive submatrices. Hence, it is
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Figure 2: An simple example demonstrating the effectiveness of ISM. (a) shows an initial correspondence set 𝐿. (b) is the affinity matrix
computed from 𝐿. (c) shows the assignment graph 𝐺 which is unconnected. (d) shows the result of SM. (e) and (f) show the result of two
revised steps of ISM, respectively.

theoretically supported to apply spectral matching on each
submatrix.

Second, a threshold is given to filter out unobvious wrong
matches. In particular, we add a reject ratio 𝛾, 𝛾 ∈ [0, 1] to
discard mismatches. 𝛾 represents the rate of matches that we
want to discard. A small 𝛾 could not filter out mismatches,
while a larger 𝛾 leads to a higher accuracy but could reject
many correctmatches at the same time.Wefind that a suitable
𝛾 should be corelated with the accuracy rate 𝛼 of 𝐿.We always
choose 𝛾 = 1 − 𝛼 or a slightly larger value. The accuracy
rate 𝛼 can always be estimated by randomly choosing a small
amount of correspondences for verification. For example,
in our biomedical application (see Section 8), we model the
deformation of lung volume images during the respiratory
cycles, where organs will not deform too drastically. And
medical therapists suggest that correspondences should not
have the offset more than 3 voxel in 𝑧-direction and 20 voxels
in 𝑥- or 𝑦-directions. These type of rules can be used as
guidance to estimate 𝛼 and therefore 𝛾.

6. Feature-Guided Image Registration

This algorithm is based on our previous paper [24]. However,
unlike [24], which focuses on solving a continuous parame-
terization and smooth trajectory of an image sequence, we
solve this registration to evaluate the effectiveness of our
coarse correspondence results. Hence we used a simplified

model with only the intensity term and regularization term.
The computation of this model is hence simpler.

Assume that we have two volume images. One image, the
moving image 𝐼

𝑀
(x), is deformed to fit the other image, the

fixed image 𝐼

𝐹
(x). 𝐼
𝐹
(x) and 𝐼

𝑀
(x) are defined on their own

spatial domain: Ω
𝐹
⊂ 𝑅

3 and Ω

𝑀
⊂ 𝑅

3, respectively. We are
going to find a transformation T(x) = x + u(x) that makes
𝐼

𝑀
(𝑇(𝑥)) spatially aligned to 𝐼

𝐹
(𝑥). The transformation is

defined as a mapping from the fixed image to the moving
image; that is, 𝑇:Ω

𝐹
⊂ 𝑅

3
→ Ω

𝑀
⊂ 𝑅

3. The quality of
alignment is defined by a cost function𝐶with a regularization
term 𝑃. In here, we will adopt the sum of squared differences
with a feature regularization term:

̂

𝑇 = argmin
𝑇

𝐶 (𝑇; 𝐼

𝐹
, 𝐼

𝑀
) + 𝜆𝑃 (𝑇) , (2)

where 𝜆 weighs similarity against feature constraints. To
solve the above minimization problem, there are basically
two approaches: parametric and nonparametric. In here
we will consider the parametric methods by introducing a
parametrization model of the transformation. The original
optimization problem thus becomes

̂

𝑇

𝜇
= argmin

𝑇
𝜇

𝐶 (𝑇

𝜇
; 𝐼

𝐹
, 𝐼

𝑀
) + 𝜆𝑃 (𝑇

𝜇
) , (3)

where the subscript 𝜇 indicates that the transformation has
been parameterized. The vector 𝜇 contains the values of the
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“transformation parameters.” In here, we use the nonrigid B-
spline transformation. Consider

𝑇

𝜇
= 𝑥 + ∑

𝑥
𝑘
∈𝑁
𝑥

𝑝

𝑘
𝛽

3
(

𝑥 − 𝑥

𝑘

𝜎

) (4)

with 𝑥

𝑘
the knot points, 𝛽3(𝑥) the cubic multidimensional

B-spline polynomial, 𝑝
𝑘
the B-spline coefficient vectors (the

control point displacements), 𝜎 the B-spline control point
spacing, and𝑁

𝑥
the set of all knot points within the compact

support of the B-spline at 𝑥. The parameters 𝜇 are formed by
the B-spline coefficients 𝑝

𝑘
.

The cost function is defined as

𝐶 (𝑇

𝜇
; 𝐼

𝐹
, 𝐼

𝑀
) =

1

󵄨

󵄨

󵄨

󵄨

Ω

𝐹

󵄨

󵄨

󵄨

󵄨

∑

𝑥
𝑖
∈Ω
𝐹

(𝐼

𝐹
(𝑥

𝑖
) − 𝐼

𝑀
(𝑇

𝜇
(𝑥

𝑖
)))

2

, (5)

with Ω

𝐹
the domain of the fixed image 𝐼

𝐹
and |Ω

𝐹
| the

number of voxels. Given a transformation 𝑇, this measure
can easily be implemented by looping over the voxels in the
fixed image 𝐼

𝐹
(𝑥

𝑖
), calculating 𝐼

𝑀
(𝑇

𝜇
(𝑥

𝑖
)) by interpolation,

and adding the squared difference to the sum.
Basing on our proposed feature matching algorithm, we

can get the feature correspondences between two volume
images. They will guide the spline-fitting. The regularization
term therefore minimizes the distance of two corresponding
feature points:

𝑃 (𝑇

𝜇
) =

1

󵄨

󵄨

󵄨

󵄨

{𝑥

𝐹

𝑖
}

󵄨

󵄨

󵄨

󵄨

∑

|{
𝑥
𝐹

𝑖 }|

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑀

𝑖
− 𝑇

𝜇
(𝑥

𝐹

𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

2

, (6)

where |{𝑥𝐹
𝑖
}| indicates the size of the correspondence set and

𝑥

𝐹

𝑖
, 𝑥

𝑀

𝑖
are corresponding features from the fixed andmoving

images, respectively.

7. Experimental Results

We denote the first two steps of our algorithm (that use
I3DSIFT and ISM) as I3DSIFT-ISM. This section demon-
strates the effectiveness of our feature matching (the first two
steps of our algorithm). In our experiments, we generate an
image pyramid with 𝑁 = 3 octaves and 𝑆 = 6 levels, where
we set 𝜎 = 1.6 and 𝑘 = 2

1/3. We set 𝛾 = 0.2 for I3DSIFT-
ISM. Our experiment materials are lung volumetric images.
We perform experiments on two sets of data: 𝑆1 and 𝑆2. 𝑆1
includes 3 real volume images (SE 1, SE 5, and SE 8) from
different respiratory periods of the same person. 𝑆2 is from
the public POPI data [30]. The volume images in 𝑆1 have a
resolution of 465 × 465 × 20, while images 𝑆2 are 482 × 360
× 141. In preprocessing, we extract region of interests (ROI)
through the graph-cut image segmentation and rescale the
gray level of each volume image to [0, 255].

In our experiments, we detect scale space extremes as
keypoints. We match descriptors based on NN (nearest
neighborhood) search and only those matches whose ratio
of NN distance and the second NN distance is smaller than
a threshold 𝑇 (𝑇 = 0.8 in our paper). We perform the
NN search in two directions and a matched pair is kept
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Figure 3: Accuracy on rotation change. Accuracy comparison is
shown on a volume image and its synthetic images with varying
rotation angles around 𝑧-axis.

only if it satisfies the NN optimality in both directions. We
conduct NN search using a k-d tree algorithm for the sake
of efficiency. We adopt a 1.5 voxel matching accuracy in
the experiments on synthetic images. In the paper, most
existing volumetric image matching algorithms are included
to make a full range of comparison on volumetric image
matching. The algorithms include global histogram (Global)
[18], reoriented global histogram (Reor.) [18], N-SIFT [18],
and 3DSURF [21].

We implement a 3DSURF descriptor based on the paper
[21] and use a source code provided in [18] on global his-
togram, reoriented global histogram, and N-SIFT. I3DSIFT
and I3DSIFT-ISM are implemented in C++ and ITK. We
show the performance of I3DSIFT and I3DSIFT-ISM on syn-
thetic images to demonstrate the performance with scaling
and rotation change. Moreover, we show results on real data.

7.1. On Synthetic Images. Rotation insensitive is an important
property to evaluate volumetric matching methods. In order
to demonstrate the performance of I3DSIFT-ISM with rota-
tion change, we do matching on SE 1 (from the first dataset
𝑆1) and its synthetic images with transforms of varying angles
about 𝑧-axis. Figure 3 shows the result. In Figure 3, I3DSIFT
gets an accuracy about 80% while N-SIFT [18] and 3DSURF
[21] will fail when rotation change is large (larger than
30

∘). I3DSIFT outperforms N-SIFT [18] and 3DSURF [21].
I3DSIFT performs much better when the rotation angle is
times of 10∘, because we define the dominant direction every
10 degrees. As a result, we can change the way we define the
dominant direction, for example, every 5∘ definition instead.
However, we should make a compromise between accuracy
and efficiency. I3DSIFT-ISM gets an accuracy of almost 100%
in every rotation angle. Above all, I3DSIFT is less insensitive
to rotation change to the state of the art, while, furthermore,
I3DSIFT-ISM is nearly rotation-invariant.

Scale insensitive is another important property to eval-
uate volumetric matching methods. In order to demon-
strate the performance of I3DSIFT-ISM with scale change,
we show matching results on SE 1 and its down-sampling
synthetic images by a varying factor along each of the 3 axes.
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Figure 4: Accuracy on scale change. Accuracy comparison is shown
on a volume image and its synthetic images with varying scale
change.

Figure 4 shows the result. I3DSIFT outperforms N-SIFT [18]
and 3DSURF [21].There are some further improvementwhen
using I3DSIFT-ISM. I3DSIFT is relatively robust to scale
change and I3DSIFT-ISM further improves the robustness.

In conclusion, I3DSIFT-ISM is very robust against rota-
tion and insensitive to scaling.

7.2. Matching Real Data. Our dataset images 𝑆1 are volu-
metric CT images scanned during respiratory cycles. SE

𝑖

indicates the 𝑖th frame. We pick three frames 1, 5, and 8,
and use I3DSIFT-ISM to match their corresponding pairs:
SE 15, SE 58, and SE 18. The gray values of corresponding
points vary little (i.e., the lighting condition is stable) in
the volume images. Therefore, we compute mean of Sum
of Square Difference 𝐷 to evaluate the matching results.
Effective matching should produce small𝐷 value. Consider

𝐷 =

1

𝑁

∑

1≤𝑖≤𝑁

(𝐼

𝐹
(𝑥Fi) − 𝐼

𝑀
(𝑥Mi))

2
, (7)

where 𝐼

𝐹
and 𝐼

𝑀
are the fixed image and the moving image,

(𝑥Fi, 𝑥Mi) is a matching pair between the two images, and 𝑁

is the match number. Table 1 shows the results.
I3DSIFT finds matches about 2 times of N-SIFT and

1.5 times of 3DSURF. Moreover, I3DSIFT is more accurate.
The I3DSIFT-ISM filters out mismatches of the matching
result of I3DSIFT. The I3DSIFT-ISM is the most accurate.
Figure 5 shows some matching results on volumetric images
using I3DSIFT.

8. Application on Feature-Guided
Image Registration

Integrating the step-3, we now apply our whole volumetric
matching algorithm on the publicly available POPI dataset.
In the 3D volume at time frame 𝑡, the coherent landmarks
(a set of 3D points, denoted as 𝑃

𝑡
= {𝑝

𝑡,1
, 𝑝

𝑡,2
, . . . , 𝑝

𝑡,|𝑃
𝑡
|
}) are

available and can be used to evaluate the registration.
In our experiments, we adopt the 3D consecutive image

registration with the alinement of corresponded features
enforced. The registration results are evaluated by the mean

Table 1: Mean of Square Difference𝐷 on 3 real volume image pairs.
SE 𝑖𝑗 represents a volume image pair, that is, SE 𝑖 is the fixed image
and SE 𝑗 the moving image. The volume images are from different
respiratory periods of the same person. Note that this error is small;
for example, out of the gray value range of 255, 𝐷 = 32.04 indicates
a mean gray difference of only 5.66.

Method Dataset Match 𝐷

3DSURF
SE 15 239 79.45
SE 58 592 58.66
SE 18 210 86.88

N-SIFT
SE 15 201 98.06
SE 58 396 36.64
SE 18 185 110.71

I3DSIFT
SE 15 399 81.79
SE 58 701 36.18
SE 18 365 83.81

I3DSIFT-ISM
SE 15 288 57.88
SE 58 480 32.04
SE 18 264 79.58

target registration error (MTRE) between the set of landmark
points {𝑃

0
, . . . , 𝑃

9
}. MTRE is defined by

𝐸

𝑟,𝑡
=

1

󵄨

󵄨

󵄨

󵄨

𝑃

𝑡

󵄨

󵄨

󵄨

󵄨

∑

𝑝
𝑡,𝑖
∈𝑃
𝑡

󵄩

󵄩

󵄩

󵄩

󵄩

𝑇

𝑟,𝑡
(𝑝

𝑟,𝑖
) − 𝑝

𝑡,𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

, (8)

where 𝑝

𝑡,𝑖
is a landmark 𝑖 in time 𝑡 and 𝑇

𝑟,𝑡 is the trans-
formation from time 𝑟 to time 𝑡. In our experiments, we
set the control weight in (3) as 𝜆 = 0.1. Table 2 shows
the comparison results between feature-guidedmatching and
the registration algorithm without any feature constraints
𝜆 = 0. By comparing the MTRE errors, we can see that the
method with both I3DSIFT and I3DSIFT-ISM outperforms
(by 8%) the method that does not consider the feature
correspondences.

Also, the method with I3DSIFT-ISM outperforms the
method with I3DSIFT. This demonstrates that

(i) correct feature correspondences (computed by our
first two-steps) are very important in improving the
volumetric matching accuracy;

(ii) better (morematches, higher correctness rate) feature
correspondences lead to better matching.

Based on our feature-guided image registration, we can
do the dynamic tumor motion modeling. With our volumet-
ric registration between consecutive images, we can build up
(by linear interpolation) a temporal deformation model. The
motion and dynamics of the tumor can be analyzed using
this model. The coherent tracking of the deforming tumor is
visualized in Figure 6.

9. Conclusion

We propose a volumetric feature modeling and coarse cor-
respondence algorithm for volumetric images. The pipeline
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Table 2: The registration error in mm, on 40 landmarks among POPI-data. 𝐸
𝑖,𝑗
is the matching error from 𝑖th to 𝑗th frame; 𝐸 is the mean

error for the whole sequence. We show the result using B-spline fitting without feature as well as the result using B-spline fitting constrained
with the correspondence result of I3DSIFT and I3DSIFT-ISM.

𝐸

0,1
𝐸

1,2
𝐸

2,3
𝐸

3,4
𝐸

4,5
𝐸

5,6
𝐸

6,7
𝐸

7,8
𝐸

8,9
𝐸

Without feature 0.71 0.80 1.42 1.41 1.71 1.21 1.51 1.41 1.13 1.25

With I3DSIFT 0.69 0.69 1.40 1.40 1.16 1.18 1.50 1.30 1.08 1.15

With I3DSIFT-ISM 0.67 0.65 1.35 1.32 1.12 1.17 1.34 1.30 1.07 1.11

(a) Rotation (b) Scaling (c) Real

Figure 5: Matching examples on volumetric images using I3DSIFT. Note that we show the results in planar images for convenience, although
I3DSIFT is applied to volumetric images.

Figure 6: Temporal image registration guided by our feature matching results in 0th, 5th, and 9th time frame (experiments conducted on
CT scans of lung during respiratory cycles).

aims to facilitate general nonrigid volumetric image reg-
istration by providing a reliable coarse feature matching.
Our algorithm includes three main steps. (1) We develop a
revised 3DSIFT (I3DSIFT) that is less sensitive to scaling and
rotation. (2) We propose a revised spectral matching (ISM)
that more reliably refines the initially extracted feature corre-
spondences. (3)We use a B-spline function to solve the dense
correspondences from the coarse (feature) correspondences.

We demonstrate the effectiveness of our coarse matching
computation on both synthetic and real data by showing that
our algorithm outperforms the existing volumetric match-
ing algorithm, such as N-SIFT [18], 3DSURF [21], global
histogram [18], and the reoriented global histogram [18].
Our method can be used for reliable volumetric matching.
As its application, we show effective feature-guided image
registration using our volumetric matching pipeline. We
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show that it outperforms the image registration method
without feature guidance.

A limitation of the current pipeline is the expensive
computational cost in 3DSIFT. Feature extraction based on
this needs a convolution in 3-dimensional space so it is quite
slow. However, in this multiscale space, the computation
can be easily conducted in a parallel manner. In the near
future, we will explore its GPU/multithread implementation
to achieve more efficient computation.
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