14,226 research outputs found

    Tracking of secondary and temporary objects in structural concrete work

    Get PDF
    Previous research has shown that “Scan-vs-BIM ” object recognition systems, that fuse 3D point clouds from Terrestrial Laser Scanning (TLS) or digital photogrammetry with 4D project BIM, provide valuable information for tracking structural works. However, until now, the potential of these systems has been demonstrated for tracking progress of permanent structures only; no work has been reported yet on tracking secondary or temporary structures. For structural concrete work, temporary structures include formwork, scaffolding and shoring, while secondary components include rebar. Together, they constitute most of the earned value in concrete work. The impact of tracking such elements would thus be added veracity and detail to earned value calculations, and subsequently better project control and performance. This paper presents three different techniques for recognizing concrete construction secondary and temporary objects in TLS point clouds. Two of the techniques are tested using real-life data collected from a reinforced concrete building construction site. The preliminary experimental results show that it is feasible to recognize secondary and temporary objects in TLS point clouds with good accuracy; but it is envisaged that superior results could be achieved by using additional cues such colour and 3D edge information

    Automatic Scaffolding Productivity Measurement through Deep Learning

    Get PDF
    This study developed a method to automatically measure scaffolding productivity by extracting and analysing semantic information from onsite vision data

    Why 'scaffolding' is the wrong metaphor : the cognitive usefulness of mathematical representations.

    Get PDF
    The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his ‘enculturation’ view of mathematical cognition. Moreover, these examples allow us to elaborate his remarks on the uniqueness of mathematical representations and their role in the emergence of new thoughts.Peer reviewe

    Consciousness and intentionality

    Get PDF
    Philosophers traditionally recognize two main features of mental states: intentionality and phenomenal consciousness. To a first approximation, intentionality is the aboutness of mental states, and phenomenal consciousness is the felt, experiential, qualitative, or "what it's like" aspect of mental states. In the past few decades, these features have been widely assumed to be distinct and independent. But several philosophers have recently challenged this assumption, arguing that intentionality and consciousness are importantly related. This article overviews the key views on the relationship between consciousness and intentionality and describes our favored view, which is a version of the phenomenal intentionality theory, roughly the view that the most fundamental kind of intentionality arises from phenomenal consciousness

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Super-Resolution Microscopy: A Virus’ Eye View of the Cell

    Get PDF
    It is difficult to observe the molecular choreography between viruses and host cell components, as they exist on a spatial scale beyond the reach of conventional microscopy. However, novel super-resolution microscopy techniques have cast aside technical limitations to reveal a nanoscale view of virus replication and cell biology. This article provides an introduction to super-resolution imaging; in particular, localisation microscopy, and explores the application of such technologies to the study of viruses and tetraspanins, the topic of this special issue

    High-Tech Tools for Teaching Physics: the Physics Education Technology Project

    Get PDF
    This article appeared in the Journal of Online Teaching and Learning September 15, 2006.This paper introduces a new suite of computer simulations from the Physics Education Technology (PhET) project, identifies features of these educational tools, and demonstrates their utility. We compare the use of PhET simulations to the use of more traditional educational resources in lecture, laboratory, recitation and informal settings of introductory college physics. In each case we demonstrate that simulations are as productive, or more productive, for developing student conceptual understanding as real equipment, reading resources, or chalk-talk lectures. We further identify six key characteristic features of these simulations that begin to delineate why these are productive tools. The simulations: support an interactive approach, employ dynamic feedback, follow a constructivist approach, provide a creative workplace, make explicit otherwise inaccessible models or phenomena, and constrain students productively
    • 

    corecore