8 research outputs found

    Efficient Multi-Template Learning for Structured Prediction

    Full text link
    Conditional random field (CRF) and Structural Support Vector Machine (Structural SVM) are two state-of-the-art methods for structured prediction which captures the interdependencies among output variables. The success of these methods is attributed to the fact that their discriminative models are able to account for overlapping features on the whole input observations. These features are usually generated by applying a given set of templates on labeled data, but improper templates may lead to degraded performance. To alleviate this issue, in this paper, we propose a novel multiple template learning paradigm to learn structured prediction and the importance of each template simultaneously, so that hundreds of arbitrary templates could be added into the learning model without caution. This paradigm can be formulated as a special multiple kernel learning problem with exponential number of constraints. Then we introduce an efficient cutting plane algorithm to solve this problem in the primal, and its convergence is presented. We also evaluate the proposed learning paradigm on two widely-studied structured prediction tasks, \emph{i.e.} sequence labeling and dependency parsing. Extensive experimental results show that the proposed method outperforms CRFs and Structural SVMs due to exploiting the importance of each template. Our complexity analysis and empirical results also show that our proposed method is more efficient than OnlineMKL on very sparse and high-dimensional data. We further extend this paradigm for structured prediction using generalized pp-block norm regularization with p>1p>1, and experiments show competitive performances when p∈[1,2)p \in [1,2)

    Mobile Activity Recognition for a Whole Day: Recognizing Real Nursing Activity with a Big Dataset

    Get PDF
    In this paper, we provide a real nursing data set for mobile activity recognition that can be used for supervised machine learning, and big data combined the patient medical records and sensors attempted for 2 years, and also propose a method for recognizing activities for a whole day utilizing prior knowledge about the activity segments in a day. Furthermore, we demonstrate data mining by applying our method to the bigger data with additional hospital data. In the proposed method, we 1) convert a set of segment timestamps into a prior probability of the activity segment by exploiting the concept of importance sampling, 2) obtain the likelihood of traditional recognition methods for each local time window within the segment range, and, 3) apply Bayesian estimation by marginalizing the conditional probability of estimating the activities for the segment samples. By evaluating with the dataset, the proposed method outperformed the traditional method without using the prior knowledge by 25.81% at maximum by balanced classification rate. Moreover, the proposed method significantly reduces duration errors of activity segments from 324.2 seconds of the traditional method to 74.6 seconds at maximum. We also demonstrate the data mining by applying our method to bigger data in a hospital.2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2015), Sep. 7-11, Grand Front Osaka in Umeda, Osaka, Japa

    Line Based Multi-Range Asymmetric Conditional Random Field For Terrestrial Laser Scanning Data Classification

    Get PDF
    Terrestrial Laser Scanning (TLS) is a ground-based, active imaging method that rapidly acquires accurate, highly dense three-dimensional point cloud of object surfaces by laser range finding. For fully utilizing its benefits, developing a robust method to classify many objects of interests from huge amounts of laser point clouds is urgently required. However, classifying massive TLS data faces many challenges, such as complex urban scene, partial data acquisition from occlusion. To make an automatic, accurate and robust TLS data classification, we present a line-based multi-range asymmetric Conditional Random Field algorithm. The first contribution is to propose a line-base TLS data classification method. In this thesis, we are interested in seven classes: building, roof, pedestrian road (PR), tree, low man-made object (LMO), vehicle road (VR), and low vegetation (LV). The line-based classification is implemented in each scan profile, which follows the line profiling nature of laser scanning mechanism.Ten conventional local classifiers are tested, including popular generative and discriminative classifiers, and experimental results validate that the line-based method can achieve satisfying classification performance. However, local classifiers implement labeling task on individual line independently of its neighborhood, the inference of which often suffers from similar local appearance across different object classes. The second contribution is to propose a multi-range asymmetric Conditional Random Field (maCRF) model, which uses object context as post-classification to improve the performance of a local generative classifier. The maCRF incorporates appearance, local smoothness constraint, and global scene layout regularity together into a probabilistic graphical model. The local smoothness enforces that lines in a local area to have the same class label, while scene layout favours an asymmetric regularity of spatial arrangement between different object classes within long-range, which is considered both in vertical (above-bellow relation) and horizontal (front-behind) directions. The asymmetric regularity allows capturing directional spatial arrangement between pairwise objects (e.g. it allows ground is lower than building, not vice-versa). The third contribution is to extend the maCRF model by adding across scan profile context, which is called Across scan profile Multi-range Asymmetric Conditional Random Field (amaCRF) model. Due to the sweeping nature of laser scanning, the sequentially acquired TLS data has strong spatial dependency, and the across scan profile context can provide more contextual information. The final contribution is to propose a sequential classification strategy. Along the sweeping direction of laser scanning, amaCRF models were sequentially constructed. By dynamically updating posterior probability of common scan profiles, contextual information propagates through adjacent scan profiles

    Query understanding: applying machine learning algorithms for named entity recognition

    Get PDF
    The term-frequency inverse-document(tf-idf) paradigm which is often used in general search engines for ranking the relevance of documents in a corpus to a given user query, is based on the frequency of occurrence of the search key terms in the corpus. These search terms are mostly expressed in natural language thus requiring natural language processing methods. But for domain-speciffic search engines like a software download portal, search terms are usually expressed in forms that does not conform to grammatical rules present in natural language and as such, they cannot be tackled using natural language processing techniques. This thesis proposes named entity recognition using supervised machine learning methods as a means to understanding queries for such domain-speciffic search engines. Particularly, our main objective is to apply machine learning techniques to automatically learn to recognize and classify search terms according to named entity class of predefined categories they belong. By so doing, we are able to understand user intents and rank result sets according to their relevance to detected named entities present in search query. Our approach involved three machine learning algorithms; Hidden Markov Models (HMM), Conditional Random Field(CRF) and Neural Network(NN). We followed the supervised learning approach in training these algorithms using labeled training data from sample queries, we then evaluated their performance on new unseen queries. Our empirical results showed precisions of 93% for NN which was based on distributed representations proposed by Yoshua Bengio, 85.60% for CRF and 82.84% for HMM. CRF 's precision improved to about 2% , achieving 87.40% after we generated gazetteer-based and morphological features. From our results, we were able to prove that machine learning methods for named entity recognition is useful for understanding query intents

    Feature selection in conditional random fields for activity recognition

    No full text
    corecore