4 research outputs found

    Unsupervised feature construction for improving data representation and semantics

    Full text link
    Attribute-based format is the main data representation format used by machine learning algorithms. When the attributes do not properly describe the initial data, performance starts to degrade. Some algorithms address this problem by internally changing the representation space, but the newly constructed features rarely have any meaning. We seek to construct, in an unsupervised way, new attributes that are more appropriate for describing a given dataset and, at the same time, comprehensible for a human user. We propose two algorithms that construct the new attributes as conjunctions of the initial primitive attributes or their negations. The generated feature sets have reduced correlations between features and succeed in catching some of the hidden relations between individuals in a dataset. For example, a feature like sky \wedge \neg building \wedge panorama would be true for non-urban images and is more informative than simple features expressing the presence or the absence of an object. The notion of Pareto optimality is used to evaluate feature sets and to obtain a balance between total correlation and the complexity of the resulted feature set. Statistical hypothesis testing is employed in order to automatically determine the values of the parameters used for constructing a data-dependent feature set. We experimentally show that our approaches achieve the construction of informative feature sets for multiple datasets. © 2013 Springer Science+Business Media New York

    Aco-based feature selection algorithm for classification

    Get PDF
    Dataset with a small number of records but big number of attributes represents a phenomenon called “curse of dimensionality”. The classification of this type of dataset requires Feature Selection (FS) methods for the extraction of useful information. The modified graph clustering ant colony optimisation (MGCACO) algorithm is an effective FS method that was developed based on grouping the highly correlated features. However, the MGCACO algorithm has three main drawbacks in producing a features subset because of its clustering method, parameter sensitivity, and the final subset determination. An enhanced graph clustering ant colony optimisation (EGCACO) algorithm is proposed to solve the three (3) MGCACO algorithm problems. The proposed improvement includes: (i) an ACO feature clustering method to obtain clusters of highly correlated features; (ii) an adaptive selection technique for subset construction from the clusters of features; and (iii) a genetic-based method for producing the final subset of features. The ACO feature clustering method utilises the ability of various mechanisms such as intensification and diversification for local and global optimisation to provide highly correlated features. The adaptive technique for ant selection enables the parameter to adaptively change based on the feedback of the search space. The genetic method determines the final subset, automatically, based on the crossover and subset quality calculation. The performance of the proposed algorithm was evaluated on 18 benchmark datasets from the University California Irvine (UCI) repository and nine (9) deoxyribonucleic acid (DNA) microarray datasets against 15 benchmark metaheuristic algorithms. The experimental results of the EGCACO algorithm on the UCI dataset are superior to other benchmark optimisation algorithms in terms of the number of selected features for 16 out of the 18 UCI datasets (88.89%) and the best in eight (8) (44.47%) of the datasets for classification accuracy. Further, experiments on the nine (9) DNA microarray datasets showed that the EGCACO algorithm is superior than the benchmark algorithms in terms of classification accuracy (first rank) for seven (7) datasets (77.78%) and demonstrates the lowest number of selected features in six (6) datasets (66.67%). The proposed EGCACO algorithm can be utilised for FS in DNA microarray classification tasks that involve large dataset size in various application domains

    Feature selection based on inference correlation

    No full text
    corecore