3,229 research outputs found

    Feature Selection Using Regularization in Approximate Linear Programs for Markov Decision Processes

    Full text link
    Approximate dynamic programming has been used successfully in a large variety of domains, but it relies on a small set of provided approximation features to calculate solutions reliably. Large and rich sets of features can cause existing algorithms to overfit because of a limited number of samples. We address this shortcoming using L1L_1 regularization in approximate linear programming. Because the proposed method can automatically select the appropriate richness of features, its performance does not degrade with an increasing number of features. These results rely on new and stronger sampling bounds for regularized approximate linear programs. We also propose a computationally efficient homotopy method. The empirical evaluation of the approach shows that the proposed method performs well on simple MDPs and standard benchmark problems.Comment: Technical report corresponding to the ICML2010 submission of the same nam

    Regularized Decomposition of High-Dimensional Multistage Stochastic Programs with Markov Uncertainty

    Full text link
    We develop a quadratic regularization approach for the solution of high-dimensional multistage stochastic optimization problems characterized by a potentially large number of time periods/stages (e.g. hundreds), a high-dimensional resource state variable, and a Markov information process. The resulting algorithms are shown to converge to an optimal policy after a finite number of iterations under mild technical assumptions. Computational experiments are conducted using the setting of optimizing energy storage over a large transmission grid, which motivates both the spatial and temporal dimensions of our problem. Our numerical results indicate that the proposed methods exhibit significantly faster convergence than their classical counterparts, with greater gains observed for higher-dimensional problems

    Feature Selection by Singular Value Decomposition for Reinforcement Learning

    Get PDF
    Solving reinforcement learning problems using value function approximation requires having good state features, but constructing them manually is often difficult or impossible. We propose Fast Feature Selection (FFS), a new method for automatically constructing good features in problems with high-dimensional state spaces but low-rank dynamics. Such problems are common when, for example, controlling simple dynamic systems using direct visual observations with states represented by raw images. FFS relies on domain samples and singular value decomposition to construct features that can be used to approximate the optimal value function well. Compared with earlier methods, such as LFD, FFS is simpler and enjoys better theoretical performance guarantees. Our experimental results show that our approach is also more stable, computes better solutions, and can be faster when compared with prior work

    Representation Learning on Graphs: A Reinforcement Learning Application

    Full text link
    In this work, we study value function approximation in reinforcement learning (RL) problems with high dimensional state or action spaces via a generalized version of representation policy iteration (RPI). We consider the limitations of proto-value functions (PVFs) at accurately approximating the value function in low dimensions and we highlight the importance of features learning for an improved low-dimensional value function approximation. Then, we adopt different representation learning algorithm on graphs to learn the basis functions that best represent the value function. We empirically show that node2vec, an algorithm for scalable feature learning in networks, and the Variational Graph Auto-Encoder constantly outperform the commonly used smooth proto-value functions in low-dimensional feature space

    Kernel methods in machine learning

    Full text link
    We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data. We cover a wide range of methods, ranging from binary classifiers to sophisticated methods for estimation with structured data.Comment: Published in at http://dx.doi.org/10.1214/009053607000000677 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore