233 research outputs found

    Edge cross-section profile for colonoscopic object detection

    Get PDF
    Colorectal cancer is the second leading cause of cancer-related deaths, claiming close to 50,000 lives annually in the United States alone. Colonoscopy is an important screening tool that has contributed to a significant decline in colorectal cancer-related deaths. During colonoscopy, a tiny video camera at the tip of the endoscope generates a video signal of the internal mucosa of the human colon. The video data is displayed on a monitor for real-time diagnosis by the endoscopist. Despite the success of colonoscopy in lowering cancer-related deaths, a significant miss rate for detection of both large polyps and cancers is estimated around 4-12%. As a result, in recent years, many computer-aided object detection techniques have been developed with the ultimate goal to assist the endoscopist in lowering the polyp miss rate. Automatic object detection in recorded video data during colonoscopy is challenging due to the noisy nature of endoscopic images caused by camera motion, strong light reflections, the wide angle lens that cannot be automatically focused, and the location and appearance variations of objects within the colon. The unique characteristics of colonoscopy video require new image/video analysis techniques. The dissertation presents our investigation on edge cross-section profile (ECSP), a local appearance model, for colonoscopic object detection. We propose several methods to derive new features on ECSP from its surrounding region pixels, its first-order derivative profile, and its second-order derivative profile. These ECSP features describe discriminative patterns for different types of objects in colonoscopy. The new algorithms and software using the ECSP features can effectively detect three representative types of objects and extract their corresponding semantic unit in terms of both accuracy and analysis time. The main contributions of dissertation are summarized as follows. The dissertation presents 1) a new ECSP calculation method and feature-based ECSP method that extracts features on ECSP for object detection, 2) edgeless ECSP method that calculates ECSP without using edges, 3) part-based multi-derivative ECSP algorithm that segments ECSP, its 1st - order and its 2nd - order derivative functions into parts and models each part using the method that is suitable to that part, 4) ECSP based algorithms for detecting three representative types of colonoscopic objects including appendiceal orifices, endoscopes during retroflexion operations, and polyps and extracting videos or segmented shots containing these objects as semantic units, and 5) a software package that implements these techniques and provides meaningful visual feedback of the detected results to the endoscopist. Ideally, we would like the software to provide feedback to the endoscopist before the next video frame becomes available and to process video data at the rate in which the data are captured (typically at about 30 frames per second (fps)). This real-time requirement is difficult to achieve using today\u27s affordable off-the-shelf workstations. We aim for achieving near real-time performance where the analysis and feedback complete at the rate of at least 1 fps. The dissertation has the following broad impacts. Firstly, the performance study shows that our proposed ECSP based techniques are promising both in terms of the detection rate and execution time for detecting the appearance of the three aforementioned types of objects in colonoscopy video. Our ECSP based techniques can be extended to both detect other types of colonoscopic objects such as diverticula, lumen and vessel, and analyze other endoscopy procedures, such as laparoscopy, upper gastrointestinal endoscopy, wireless capsule endoscopy and EGD. Secondly, to our best knowledge, our polyp detection system is the only computer-aided system that can warn the endoscopist the appearance of polyps in near real time. Our retroflexion detection system is also the first computer-aided system that can detect retroflexion in near real-time. Retroflexion is a maneuver used by the endoscopist to inspect the colon area that is hard to reach. The use of our system in future clinical trials may contribute to the decline in the polyp miss rate during live colonoscopy. Our system may be used as a training platform for novice endoscopists. Lastly, the automatic documentation of detected semantic units of colonoscopic objects can be helpful to discover unknown patterns of colorectal cancers or new diseases and used as educational resources for endoscopic research

    μž„μƒμˆ κΈ° ν–₯상을 μœ„ν•œ λ”₯λŸ¬λ‹ 기법 연ꡬ: λŒ€μž₯λ‚΄μ‹œκ²½ 진단 및 λ‘œλ΄‡μˆ˜μˆ  술기 평가에 적용

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ ν˜‘λ™κ³Όμ • μ˜μš©μƒμ²΄κ³΅ν•™μ „κ³΅, 2020. 8. 김희찬.This paper presents deep learning-based methods for improving performance of clinicians. Novel methods were applied to the following two clinical cases and the results were evaluated. In the first study, a deep learning-based polyp classification algorithm for improving clinical performance of endoscopist during colonoscopy diagnosis was developed. Colonoscopy is the main method for diagnosing adenomatous polyp, which can multiply into a colorectal cancer and hyperplastic polyps. The classification algorithm was developed using convolutional neural network (CNN), trained with colorectal polyp images taken by a narrow-band imaging colonoscopy. The proposed method is built around an automatic machine learning (AutoML) which searches for the optimal architecture of CNN for colorectal polyp image classification and trains the weights of the architecture. In addition, gradient-weighted class activation mapping technique was used to overlay the probabilistic basis of the prediction result on the polyp location to aid the endoscopists visually. To verify the improvement in diagnostic performance, the efficacy of endoscopists with varying proficiency levels were compared with or without the aid of the proposed polyp classification algorithm. The results confirmed that, on average, diagnostic accuracy was improved and diagnosis time was shortened in all proficiency groups significantly. In the second study, a surgical instruments tracking algorithm for robotic surgery video was developed, and a model for quantitatively evaluating the surgeons surgical skill based on the acquired motion information of the surgical instruments was proposed. The movement of surgical instruments is the main component of evaluation for surgical skill. Therefore, the focus of this study was develop an automatic surgical instruments tracking algorithm, and to overcome the limitations presented by previous methods. The instance segmentation framework was developed to solve the instrument occlusion issue, and a tracking framework composed of a tracker and a re-identification algorithm was developed to maintain the type of surgical instruments being tracked in the video. In addition, algorithms for detecting the tip position of instruments and arm-indicator were developed to acquire the movement of devices specialized for the robotic surgery video. The performance of the proposed method was evaluated by measuring the difference between the predicted tip position and the ground truth position of the instruments using root mean square error, area under the curve, and Pearsons correlation analysis. Furthermore, motion metrics were calculated from the movement of surgical instruments, and a machine learning-based robotic surgical skill evaluation model was developed based on these metrics. These models were used to evaluate clinicians, and results were similar in the developed evaluation models, the Objective Structured Assessment of Technical Skill (OSATS), and the Global Evaluative Assessment of Robotic Surgery (GEARS) evaluation methods. In this study, deep learning technology was applied to colorectal polyp images for a polyp classification, and to robotic surgery videos for surgical instruments tracking. The improvement in clinical performance with the aid of these methods were evaluated and verified.λ³Έ 논문은 μ˜λ£Œμ§„μ˜ μž„μƒμˆ κΈ° λŠ₯λ ₯을 ν–₯μƒμ‹œν‚€κΈ° μœ„ν•˜μ—¬ μƒˆλ‘œμš΄ λ”₯λŸ¬λ‹ 기법듀을 μ œμ•ˆν•˜κ³  λ‹€μŒ 두 가지 싀둀에 λŒ€ν•΄ μ μš©ν•˜μ—¬ κ·Έ κ²°κ³Όλ₯Ό ν‰κ°€ν•˜μ˜€λ‹€. 첫 번째 μ—°κ΅¬μ—μ„œλŠ” λŒ€μž₯λ‚΄μ‹œκ²½μœΌλ‘œ κ΄‘ν•™ 진단 μ‹œ, λ‚΄μ‹œκ²½ μ „λ¬Έμ˜μ˜ 진단 λŠ₯λ ₯을 ν–₯μƒμ‹œν‚€κΈ° μœ„ν•˜μ—¬ λ”₯λŸ¬λ‹ 기반의 μš©μ’… λΆ„λ₯˜ μ•Œκ³ λ¦¬μ¦˜μ„ κ°œλ°œν•˜κ³ , λ‚΄μ‹œκ²½ μ „λ¬Έμ˜μ˜ 진단 λŠ₯λ ₯ ν–₯상 μ—¬λΆ€λ₯Ό κ²€μ¦ν•˜κ³ μž ν•˜μ˜€λ‹€. λŒ€μž₯λ‚΄μ‹œκ²½ κ²€μ‚¬λ‘œ μ•”μ’…μœΌλ‘œ 증식할 수 μžˆλŠ” μ„ μ’…κ³Ό 과증식성 μš©μ’…μ„ μ§„λ‹¨ν•˜λŠ” 것은 μ€‘μš”ν•˜λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” ν˜‘λŒ€μ—­ μ˜μƒ λ‚΄μ‹œκ²½μœΌλ‘œ μ΄¬μ˜ν•œ λŒ€μž₯ μš©μ’… μ˜μƒμœΌλ‘œ ν•©μ„±κ³± 신경망을 ν•™μŠ΅ν•˜μ—¬ λΆ„λ₯˜ μ•Œκ³ λ¦¬μ¦˜μ„ κ°œλ°œν•˜μ˜€λ‹€. μ œμ•ˆν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ€ μžλ™ κΈ°κ³„ν•™μŠ΅ (AutoML) λ°©λ²•μœΌλ‘œ, λŒ€μž₯ μš©μ’… μ˜μƒμ— μ΅œμ ν™”λœ ν•©μ„±κ³± 신경망 ꡬ쑰λ₯Ό μ°Ύκ³  μ‹ κ²½λ§μ˜ κ°€μ€‘μΉ˜λ₯Ό ν•™μŠ΅ν•˜μ˜€λ‹€. λ˜ν•œ 기울기-κ°€μ€‘μΉ˜ 클래슀 ν™œμ„±ν™” 맡핑 기법을 μ΄μš©ν•˜μ—¬ κ°œλ°œν•œ ν•©μ„±κ³± 신경망 결과의 ν™•λ₯ μ  κ·Όκ±°λ₯Ό μš©μ’… μœ„μΉ˜μ— μ‹œκ°μ μœΌλ‘œ λ‚˜νƒ€λ‚˜λ„λ‘ ν•¨μœΌλ‘œ λ‚΄μ‹œκ²½ μ „λ¬Έμ˜μ˜ 진단을 돕도둝 ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μˆ™λ ¨λ„ κ·Έλ£Ήλ³„λ‘œ λ‚΄μ‹œκ²½ μ „λ¬Έμ˜κ°€ μš©μ’… λΆ„λ₯˜ μ•Œκ³ λ¦¬μ¦˜μ˜ κ²°κ³Όλ₯Ό μ°Έκ³ ν•˜μ˜€μ„ λ•Œ 진단 λŠ₯λ ₯이 ν–₯μƒλ˜μ—ˆλŠ”μ§€ 비ꡐ μ‹€ν—˜μ„ μ§„ν–‰ν•˜μ˜€κ³ , λͺ¨λ“  κ·Έλ£Ήμ—μ„œ μœ μ˜λ―Έν•˜κ²Œ 진단 정확도가 ν–₯μƒλ˜κ³  진단 μ‹œκ°„μ΄ λ‹¨μΆ•λ˜μ—ˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€. 두 번째 μ—°κ΅¬μ—μ„œλŠ” λ‘œλ΄‡μˆ˜μˆ  λ™μ˜μƒμ—μ„œ μˆ˜μˆ λ„κ΅¬ μœ„μΉ˜ 좔적 μ•Œκ³ λ¦¬μ¦˜μ„ κ°œλ°œν•˜κ³ , νšλ“ν•œ μˆ˜μˆ λ„κ΅¬μ˜ μ›€μ§μž„ 정보λ₯Ό λ°”νƒ•μœΌλ‘œ 수술자의 μˆ™λ ¨λ„λ₯Ό μ •λŸ‰μ μœΌλ‘œ ν‰κ°€ν•˜λŠ” λͺ¨λΈμ„ μ œμ•ˆν•˜μ˜€λ‹€. μˆ˜μˆ λ„κ΅¬μ˜ μ›€μ§μž„μ€ 수술자의 λ‘œλ΄‡μˆ˜μˆ  μˆ™λ ¨λ„λ₯Ό ν‰κ°€ν•˜κΈ° μœ„ν•œ μ£Όμš”ν•œ 정보이닀. λ”°λΌμ„œ λ³Έ μ—°κ΅¬λŠ” λ”₯λŸ¬λ‹ 기반의 μžλ™ μˆ˜μˆ λ„κ΅¬ 좔적 μ•Œκ³ λ¦¬μ¦˜μ„ κ°œλ°œν•˜μ˜€μœΌλ©°, λ‹€μŒ 두가지 μ„ ν–‰μ—°κ΅¬μ˜ ν•œκ³„μ μ„ κ·Ήλ³΅ν•˜μ˜€λ‹€. μΈμŠ€ν„΄μŠ€ λΆ„ν•  (Instance Segmentation) ν”„λ ˆμž„μ›μ„ κ°œλ°œν•˜μ—¬ 폐색 (Occlusion) 문제λ₯Ό ν•΄κ²°ν•˜μ˜€κ³ , 좔적기 (Tracker)와 μž¬μ‹λ³„ν™” (Re-Identification) μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ κ΅¬μ„±λœ 좔적 ν”„λ ˆμž„μ›μ„ κ°œλ°œν•˜μ—¬ λ™μ˜μƒμ—μ„œ μΆ”μ ν•˜λŠ” μˆ˜μˆ λ„κ΅¬μ˜ μ’…λ₯˜κ°€ μœ μ§€λ˜λ„λ‘ ν•˜μ˜€λ‹€. λ˜ν•œ λ‘œλ΄‡μˆ˜μˆ  λ™μ˜μƒμ˜ νŠΉμˆ˜μ„±μ„ κ³ λ €ν•˜μ—¬ μˆ˜μˆ λ„κ΅¬μ˜ μ›€μ§μž„μ„ νšλ“ν•˜κΈ°μœ„ν•΄ μˆ˜μˆ λ„κ΅¬ 끝 μœ„μΉ˜μ™€ λ‘œλ΄‡ νŒ”-인디케이터 (Arm-Indicator) 인식 μ•Œκ³ λ¦¬μ¦˜μ„ κ°œλ°œν•˜μ˜€λ‹€. μ œμ•ˆν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ˜ μ„±λŠ₯은 μ˜ˆμΈ‘ν•œ μˆ˜μˆ λ„κ΅¬ 끝 μœ„μΉ˜μ™€ μ •λ‹΅ μœ„μΉ˜ κ°„μ˜ 평균 제곱근 였차, 곑선 μ•„λž˜ 면적, ν”Όμ–΄μŠ¨ μƒκ΄€λΆ„μ„μœΌλ‘œ ν‰κ°€ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μˆ˜μˆ λ„κ΅¬μ˜ μ›€μ§μž„μœΌλ‘œλΆ€ν„° μ›€μ§μž„ μ§€ν‘œλ₯Ό κ³„μ‚°ν•˜κ³  이λ₯Ό λ°”νƒ•μœΌλ‘œ κΈ°κ³„ν•™μŠ΅ 기반의 λ‘œλ΄‡μˆ˜μˆ  μˆ™λ ¨λ„ 평가 λͺ¨λΈμ„ κ°œλ°œν•˜μ˜€λ‹€. κ°œλ°œν•œ 평가 λͺ¨λΈμ€ 기쑴의 Objective Structured Assessment of Technical Skill (OSATS), Global Evaluative Assessment of Robotic Surgery (GEARS) 평가 방법과 μœ μ‚¬ν•œ μ„±λŠ₯을 λ³΄μž„μ„ ν™•μΈν•˜μ˜€λ‹€. λ³Έ 논문은 μ˜λ£Œμ§„μ˜ μž„μƒμˆ κΈ° λŠ₯λ ₯을 ν–₯μƒμ‹œν‚€κΈ° μœ„ν•˜μ—¬ λŒ€μž₯ μš©μ’… μ˜μƒκ³Ό λ‘œλ΄‡μˆ˜μˆ  λ™μ˜μƒμ— λ”₯λŸ¬λ‹ κΈ°μˆ μ„ μ μš©ν•˜κ³  κ·Έ μœ νš¨μ„±μ„ ν™•μΈν•˜μ˜€μœΌλ©°, ν–₯후에 μ œμ•ˆν•˜λŠ” 방법이 μž„μƒμ—μ„œ μ‚¬μš©λ˜κ³  μžˆλŠ” 진단 및 평가 λ°©λ²•μ˜ λŒ€μ•ˆμ΄ 될 κ²ƒμœΌλ‘œ κΈ°λŒ€ν•œλ‹€.Chapter 1 General Introduction 1 1.1 Deep Learning for Medical Image Analysis 1 1.2 Deep Learning for Colonoscipic Diagnosis 2 1.3 Deep Learning for Robotic Surgical Skill Assessment 3 1.4 Thesis Objectives 5 Chapter 2 Optical Diagnosis of Colorectal Polyps using Deep Learning with Visual Explanations 7 2.1 Introduction 7 2.1.1 Background 7 2.1.2 Needs 8 2.1.3 Related Work 9 2.2 Methods 11 2.2.1 Study Design 11 2.2.2 Dataset 14 2.2.3 Preprocessing 17 2.2.4 Convolutional Neural Networks (CNN) 21 2.2.4.1 Standard CNN 21 2.2.4.2 Search for CNN Architecture 22 2.2.4.3 Searched CNN Training 23 2.2.4.4 Visual Explanation 24 2.2.5 Evaluation of CNN and Endoscopist Performances 25 2.3 Experiments and Results 27 2.3.1 CNN Performance 27 2.3.2 Results of Visual Explanation 31 2.3.3 Endoscopist with CNN Performance 33 2.4 Discussion 45 2.4.1 Research Significance 45 2.4.2 Limitations 47 2.5 Conclusion 49 Chapter 3 Surgical Skill Assessment during Robotic Surgery by Deep Learning-based Surgical Instrument Tracking 50 3.1 Introduction 50 3.1.1 Background 50 3.1.2 Needs 51 3.1.3 Related Work 52 3.2 Methods 56 3.2.1 Study Design 56 3.2.2 Dataset 59 3.2.3 Instance Segmentation Framework 63 3.2.4 Tracking Framework 66 3.2.4.1 Tracker 66 3.2.4.2 Re-identification 68 3.2.5 Surgical Instrument Tip Detection 69 3.2.6 Arm-Indicator Recognition 71 3.2.7 Surgical Skill Prediction Model 71 3.3 Experiments and Results 78 3.3.1 Performance of Instance Segmentation Framework 78 3.3.2 Performance of Tracking Framework 82 3.3.3 Evaluation of Surgical Instruments Trajectory 83 3.3.4 Evaluation of Surgical Skill Prediction Model 86 3.4 Discussion 90 3.4.1 Research Significance 90 3.4.2 Limitations 92 3.5 Conclusion 96 Chapter 4 Summary and Future Works 97 4.1 Thesis Summary 97 4.2 Limitations and Future Works 98 Bibliography 100 Abstract in Korean 116 Acknowledgement 119Docto

    Enhancing endoscopic navigation and polyp detection using artificial intelligence

    Get PDF
    Colorectal cancer (CRC) is one most common and deadly forms of cancer. It has a very high mortality rate if the disease advances to late stages however early diagnosis and treatment can be curative is hence essential to enhancing disease management. Colonoscopy is considered the gold standard for CRC screening and early therapeutic treatment. The effectiveness of colonoscopy is highly dependent on the operator’s skill, as a high level of hand-eye coordination is required to control the endoscope and fully examine the colon wall. Because of this, detection rates can vary between different gastroenterologists and technology have been proposed as solutions to assist disease detection and standardise detection rates. This thesis focuses on developing artificial intelligence algorithms to assist gastroenterologists during colonoscopy with the potential to ensure a baseline standard of quality in CRC screening. To achieve such assistance, the technical contributions develop deep learning methods and architectures for automated endoscopic image analysis to address both the detection of lesions in the endoscopic image and the 3D mapping of the endoluminal environment. The proposed detection models can run in real-time and assist visualization of different polyp types. Meanwhile the 3D reconstruction and mapping models developed are the basis for ensuring that the entire colon has been examined appropriately and to support quantitative measurement of polyp sizes using the image during a procedure. Results and validation studies presented within the thesis demonstrate how the developed algorithms perform on both general scenes and on clinical data. The feasibility of clinical translation is demonstrated for all of the models on endoscopic data from human participants during CRC screening examinations

    AFP-Net: Realtime Anchor-Free Polyp Detection in Colonoscopy

    Full text link
    Colorectal cancer (CRC) is a common and lethal disease. Globally, CRC is the third most commonly diagnosed cancer in males and the second in females. For colorectal cancer, the best screening test available is the colonoscopy. During a colonoscopic procedure, a tiny camera at the tip of the endoscope generates a video of the internal mucosa of the colon. The video data are displayed on a monitor for the physician to examine the lining of the entire colon and check for colorectal polyps. Detection and removal of colorectal polyps are associated with a reduction in mortality from colorectal cancer. However, the miss rate of polyp detection during colonoscopy procedure is often high even for very experienced physicians. The reason lies in the high variation of polyp in terms of shape, size, textural, color and illumination. Though challenging, with the great advances in object detection techniques, automated polyp detection still demonstrates a great potential in reducing the false negative rate while maintaining a high precision. In this paper, we propose a novel anchor free polyp detector that can localize polyps without using predefined anchor boxes. To further strengthen the model, we leverage a Context Enhancement Module and Cosine Ground truth Projection. Our approach can respond in real time while achieving state-of-the-art performance with 99.36% precision and 96.44% recall
    • …
    corecore